Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bismuth-stabilized (2x1) and (2x4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study
Show others and affiliations
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 78, no 19Article in journal (Refereed) Published
Abstract [en]

Bismuth adsorbate-stabilized (2x1) and (2x4) reconstructions of the GaAs(100) surfaces have been studied by first-principles calculations, valence-band and core-level photoelectron spectroscopies, and scanning tunneling microscopy. It is demonstrated that large Bi atom size leads to the formation of the pseudogap at the Fermi energy and to the lower energy of an adsorbate-derived surface band, which contributes to the stabilization of the exceptional Bi/GaAs(100)(2x1) reconstruction. It is proposed that the Bi/GaAs(100)(2x4) reconstructions include asymmetric mixed Bi-As dimers, in addition to the Bi-Bi dimers. Based on the calculations, we solve the atomic origins of the surface core-level shifts (SCLSs) of the Bi 5d photoemission spectra from the Bi/GaAs(100)(2x4) surfaces. This allows for resolving the puzzle related to the identification of two SCLS components often found in the measurements of the Bi 5d and Sb 4d core-level emissions of the Bi/III-V and Sb/III-V(100)(2x4) surfaces. Finally, the reason for the absence of the common (2x4)-beta 2 structure and additional support for the stability of the (2x1) structure on the Bi/III-V(100) surfaces are discussed in terms of Bi atom size and subsurface stress.

Place, publisher, year, edition, pages
2008. Vol. 78, no 19
Keyword [en]
ab initio calculations, adsorbed layers, bismuth, core levels, energy, gap, Fermi level, gallium arsenide, III-V semiconductors, photoelectron, spectra, scanning tunnelling microscopy, surface reconstruction, valence bands, semiconductor 001 surfaces, initio molecular-dynamics, total-energy, calculations, augmented-wave method, x 4) surface, atomic-structure, electronic-structure, basis-set, bi, gaas(001)
Identifiers
URN: urn:nbn:se:kth:diva-18114DOI: 10.1103/PhysRevB.78.195304ISI: 000262607800063Scopus ID: 2-s2.0-56349135503OAI: oai:DiVA.org:kth-18114DiVA: diva2:336160
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Vitos, Levente

Search in DiVA

By author/editor
Vitos, LeventeJohansson, Börje
By organisation
Applied Material Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf