Change search
ReferencesLink to record
Permanent link

Direct link
Auroral arc and oval electrodynamics in the Harang region
KTH, School of Electrical Engineering (EES), Space and Plasma Physics.ORCID iD: 0000-0003-1270-1616
Show others and affiliations
2009 (English)In: Journal of Geophysical Research, ISSN 0148-0227, Vol. 114Article in journal (Refereed) Published
Abstract [en]

Auroral arcs are typically described in terms of an upward field-aligned current (FAC) sheet above the arc, connected by ionospheric Pedersen current to a downward FAC sheet near the arc. On the basis of data measured by the FAST spacecraft, conjugate with ground optical observations, we present first a wide and stable winter evening arc, where this standard model does not apply. The arc is observed in the Harang region during the growth phase of a modest substorm, poleward of the convection reversal (CR) boundary. Although the magnetic field data suggest the typical configuration, the two FAC sheets appear to be decoupled near the satellite footprint: the upward FAC is fed by the westward electrojet (WEJ), while the downward FAC feeds the eastward electrojet (EEJ). The examination of the arc by the newly developed ALADYN technique confirms this peculiar current topology. For comparison, we apply ALADYN also to a second evening arc, located within the Harang region equatorward from the CR. The arc is confirmed to have the standard configuration, consistent with a former study, but substantial FAC-EJ coupling is inferred in the auroral oval both poleward and equatorward of the arc. A key element for the topology of the current closure is the westward component of the electric field, which influences the relative location of the CR with respect to the large-scale FAC reversal (FR) boundary. As proved by tests on synthetic data, a westward component of the electric field pushes the CR toward the FR, preventing thus the standard FAC closure, while the conductance and FAC pattern shape the CR profile. Since a westward electric field is often measured in the Harang region, the FAC-EJ coupling is expected to be an essential ingredient there. This has important implications for the current closure in the equatorial magnetosphere and for the auroral current circuit in the WEJ region, closely related to the substorm process.

Place, publisher, year, edition, pages
2009. Vol. 114
Keyword [en]
field-aligned currents, substorm, discontinuity, magnetosphere, conductances, electrojets, energy, sector
URN: urn:nbn:se:kth:diva-18311DOI: 10.1029/2008ja013630ISI: 000264687100003ScopusID: 2-s2.0-67649088308OAI: diva2:336357
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2011-02-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Karlsson, Tomas
By organisation
Space and Plasma Physics
In the same journal
Journal of Geophysical Research

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link