Change search
ReferencesLink to record
Permanent link

Direct link
Ab Initio Study of Molecular Hydrogen Adsorption in Covalent Organic Framework-1
Show others and affiliations
2009 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 19, 8498-8504 p.Article in journal (Refereed) Published
Abstract [en]

The adsorption energies of hydrogen molecules at all possible adsorption sites of covalent organic framework-1 (COF-1) are studied by density functional theory (DFT) and second-order Moller-Plesset perturbation theory (MP2). The most favorable adsorption sites from our DFT results are on the top of an oxygen atom for the B3O3 ring and on the top of the center of the C-C bond for the benzene ring when a single H-2 is interacting with the COF-1. The adsorption energy trend obtained from the DFT calculations is found to be in good agreement with the MP2 binding energy trend. The binding preferences are slightly changed when high hydrogen loading is considered. H-2 molecules prefer to be trapped on the top of the carbon atoms of the benzene ring and also on the top of the oxygen atoms of the B3O3 ring. These findings are confirmed by hydrogen center-of-mass distribution results obtained using molecular dynamics simulations. Moreover, our DFT results reveal that the hydrogen adsorption energies are boosted when we increase the number of hydrogen loadings due to attractive H-2-H-2 interactions. In addition, the nonavailability of the remaining adsorption sites in the COF-1 leads to a reduction of the H-2 mobility.

Place, publisher, year, edition, pages
2009. Vol. 113, no 19, 8498-8504 p.
Keyword [en]
basis-set, storage, density, physisorption, state, gas
URN: urn:nbn:se:kth:diva-18402DOI: 10.1021/jp809167bISI: 000265895500075ScopusID: 2-s2.0-67049118304OAI: diva2:336449
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2011-01-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
The Journal of Physical Chemistry C

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link