References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On Degree-Constrained Analytic Interpolation With Interpolation Points Close to the BoundaryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 54, no 6, 1412-1418 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2009. Vol. 54, no 6, 1412-1418 p.
##### Keyword [en]

Analytic interpolation, generalized entropy rate, sensitivity shaping, nevanlinna-pick interpolation, preserving model-reduction, complexity, constraint
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-18526DOI: 10.1109/tac.2009.2017978ISI: 000267064000033ScopusID: 2-s2.0-67649595784OAI: oai:DiVA.org:kth-18526DiVA: diva2:336573
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

QC 20100525 QC 20120118Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2012-01-18Bibliographically approved
##### In thesis

In the recent article [4], a theory for complexity-constrained interpolation of contractive functions is developed. In particular, it is shown that any such interpolant may be obtained as the unique minimizer of a (convex) weighted entropy gain. In this technical note we study this optimization problem in detail and describe how the minimizer depends on weight selection and on interpolation conditions. We first show that, if, for a sequence of interpolants, the values of the entropy gain of the interpolants converge to the optimum, then the interpolants converge in H-2, but not in H-infinity This result is then used to describe the asymptotic behavior of the interpolant as an interpolation point approaches the boundary of the domain of analyticity. For loop shaping to specifications in control design, it might at first seem natural to place strategically additional interpolation points close to the boundary. However, our results indicate that such a strategy will have little effect on the shape. Another consequence of our results relates to model reduction based on minimum-entropy principles, where one should avoid placing interpolation points too close to the boundary.

1. Inverse Problems in Analytic Interpolation for Robust Control and Spectral Estimation$(function(){PrimeFaces.cw("OverlayPanel","overlay37749",{id:"formSmash:j_idt647:0:j_idt651",widgetVar:"overlay37749",target:"formSmash:j_idt647:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});