Change search
ReferencesLink to record
Permanent link

Direct link
High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic Chromophores
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.ORCID iD: 0000-0003-2673-075X
Show others and affiliations
2009 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, no 29, 2993-2996 p.Article in journal (Refereed) Published
Abstract [en]

The synthesis and characterization of an organic dye, P4, together with its performance in p-type dye-sensitized solar cells (DSSCs) is presented. A solar-cell device based on P4 and an electrolyte that contains the I-/I-3(-) couple in acetonitrile yielded an IPCE value of 44% on a transparent NiO film only 1-1.4 mu m thick, the highest value obtained so far.

Place, publisher, year, edition, pages
2009. Vol. 21, no 29, 2993-2996 p.
Keyword [en]
Chemistry, Multidisciplinary, Chemistry, Physical, Nanoscience & Nanotechnology, Materials Science, Multidisciplinary, Physics, Applied; Physics, Condensed Matter
URN: urn:nbn:se:kth:diva-18695DOI: 10.1002/adma.200802461ISI: 000269090800007ScopusID: 2-s2.0-68149133000OAI: diva2:336742
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2011-01-18Bibliographically approved
In thesis
1. The study of organic dyes for p-type dye-sensitized solar cells
Open this publication in new window or tab >>The study of organic dyes for p-type dye-sensitized solar cells
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns the study of D–π–A type dyes as sensitizers for NiO-based p-type dye-sensitized solar cells. The focus has been on the design and synthesis of efficient dyes and the identification of parameters limiting the solar cell performance.

We have developed a new design strategy for the dyes: upon photoexcitation of the dye, the electron density is moving from the part that is attached to the semiconductor towards the part which is pointing away. This intramolecular charge transfer provides an efficient pathway for the following charge transfer processes. The first organic dye, composed of a triphenylamine (TPA) moiety as the electron-donor, dicyanovinyl groups as the electron-acceptors and linked by thiophene units, showed much better photovoltaic performance than other dyes reported at the same time, turning it into a model for future dye design.

A series of dyes with different energy levels were synthesized and characterized on NiO-based devices using iodide/triiodide as redox couple. Lower photovoltaic performance was obtained for the dye with less negative reduction potential due to the insufficient driving force for dye regeneration. We have investigated the symmetric and unsymmetric structures of the dyes. The breaking of molecular symmetry did not significantly broaden the absorption spectrum, or improve the efficiency. In addition, we have tuned the molecular structure to prevent charge recombination. Increasing the distance between the anchoring group and the electron-acceptor was an effective way to improve the device efficiency. Besides TPA-based compounds, a zinc porphyrin dye was also synthesized and tested in p-type solar cells. However, the solar cell performed less well due to its narrow absorption band and the tendency for aggregation. Co-sensitization of the TPA-based dye with the porphyrin dye did not result in higher photovoltaic performance.

After optimization of the dye structure, the highest overall conversion efficiency was achieved for the P5-sensitized solar cell, based on 1.5 μm NiO film prepared from NiCl2 and the F108 template precursor, and an acetonitrile-based electrolyte.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 72 p.
Trita-CHE-Report, ISSN 1654-1081
National Category
Organic Chemistry
urn:nbn:se:kth:diva-24406 (URN)978-91-7415-695-9 (ISBN)
Public defence
2010-09-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
QC 20100909Available from: 2010-09-09 Created: 2010-09-07 Last updated: 2010-09-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Qin, PengLinder, MatsBrinck, ToreHagfeldt, AndersSun, Licheng
By organisation
Centre of Molecular Devices, CMD
In the same journal
Advanced Materials

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 119 hits
ReferencesLink to record
Permanent link

Direct link