Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
2009 (English)In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 11Article in journal (Refereed) Published
Abstract [en]

Using nonlinear system theory and numerical simulations, we map out the static and dynamic phase diagrams in the zero applied field of a spin torque nano device with a tilted polarizer (TP). We find that for sufficiently large currents, even very small tilt angles (beta > 1 degrees) will lead to steady free layer precession in zero field. Within a rather large range of tilt angles, 1 degrees < beta < 19 degrees, we find coexisting static states and hysteretic switching between these using only current. In a more narrow window (1 degrees < beta < 5 degrees) one of the static states turns into a limit cycle (precession). The coexistence of current-driven static and dynamic states in the zero magnetic field is unique to the TP device and leads to large hysteresis in the upper and lower threshold currents for its operation. The nano device with TP can facilitate the generation of large amplitude mode of spin torque signals without the need for cumbersome magnetic field sources and thus should be very important for future telecommunication applications based on spin transfer torque effects.

Place, publisher, year, edition, pages
2009. Vol. 11
Keyword [en]
cocr thin-films, oscillator driven, media, anisotropy, memory
Identifiers
URN: urn:nbn:se:kth:diva-18888DOI: 10.1088/1367-2630/11/10/103028ISI: 000271033600002Scopus ID: 2-s2.0-72149086095OAI: oai:DiVA.org:kth-18888DiVA: diva2:336935
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhou, YanBonetti, StefanoZha, ChaolinÅkerman, Johan
By organisation
Microelectronics and Applied Physics, MAP
In the same journal
New Journal of Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf