Change search
ReferencesLink to record
Permanent link

Direct link
L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.ORCID iD: 0000-0001-5678-5298
Show others and affiliations
2009 (English)In: Journal of Alloys and Compounds, ISSN 0925-8388, Vol. 484, no 1-2, 371-376 p.Article in journal (Refereed) Published
Abstract [en]

L-lysine coated iron oxide (LCIO) nanoparticles were synthesized by a co-precipitation method in the presence of amino acid. XRD analysis confirmed the presence of cubic magnetite phase with an average crystallite size of 8 +/- 4 nm. Particle size estimated from TEM, by log-normal fitting, is similar to 114 nm. The difference between the crystallite size from XRD and particle size from TEM indicates polycrystalline nature of synthesized particles. FT-IR show that the binding Of L-lysine on the surface of iron oxide through carboxyl groups is via unidentate linkage. The presence of L-lysine on iron oxide is also confirmed by zeta potential measurements on LCIO nanoparticles, revealing a partial coverage of iron oxide with L-lysine. In order to obtain chemically stable, well-dispersed and uniform sized nanoparticles, amino acids are suitable because they play a very important role in the body. Conductivity measurements were performed to investigate the influence of the coating on the conduction characteristics of iron oxide and results show the existence of a hopping conduction mechanism. Magnetic transition is observed at similar to 70 degrees C for uncoated iron oxide and LCIO samples. Frequency (1 Hz to 3 MHz) and temperature (290-420 K) dependant AC conductivity measurements have resulted in AC activation energies between 0.048 and 0.041 eV for uncoated and 0.050-0.044 eV for LCIO nanoparticles. Temperature-dependant DC resistivity measurements of iron oxide and LCIO at high temperatures resulted in the DC activation energies of 0.22 and 0.43 eV respectively. The higher activation energy value for LCIO is the result of coating by insulating L-lysine layer.

Place, publisher, year, edition, pages
2009. Vol. 484, no 1-2, 371-376 p.
Keyword [en]
L-lysine, Magnetic Nanoparticles, XRD, TEM, Conductivity, magnetite nanoparticles, particles, hematite
URN: urn:nbn:se:kth:diva-18913DOI: 10.1016/j.jallcom.2009.04.103ISI: 000271334900070ScopusID: 2-s2.0-69949088970OAI: diva2:336960
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2010-12-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Toprak, Muhammet
By organisation
Functional Materials, FNM
In the same journal
Journal of Alloys and Compounds

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 148 hits
ReferencesLink to record
Permanent link

Direct link