Change search
ReferencesLink to record
Permanent link

Direct link
The Reaction of Ozone with the Hydroxide Ion: Mechanistic Considerations Based on Thermokinetic and Quantum Chemical Calculations and the Role of HO4- in Superoxide Dismutation
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Nuclear Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Nuclear Chemistry.
2010 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 4, 1372-1377 p.Article in journal (Refereed) Published
Abstract [en]

The reaction of OH- with O-3 eventually leads to the formation of center dot OH radicals. In the original mechanistic concept (J. Staehelin, J. Hoigne, Environ. Sci. Technol. 1982, 16, 676-681) it was suggested that the first step occurred by O transfer: OH- + O-3 -> HO2- + O-2 and that center dot OH was generated in the subsequent reaction(s) of HO2- with O-3 (the peroxone process). This mechanistic concept has now been revised on the basis of thermokinetic and quantum chemical calculations. A onestep O transfer such as that mentioned above would require the release of O-2 in its excited singlet state (O-1(2), O-2-((1)Delta(g))); this state lies 95.5 kJ mol(-1) above the triplet ground state ((3)Sigma(-)(g))). The low experimental rate constant of 70m(-1) s(-1) is not incompatible with such a reaction. However, according to our calculations, the reaction of OH- with O-3 to form an adduct (OH- + O-3 -> HO4-; Delta G = 3.5 kJ mol(-1)) is a much better candidate for the rate-determining step as compared with the significantiv more endergonic O transfer (Delta G=26.7 kJ mol(-1)). Hence, we favor this reaction; all the more so as numerous precedents of similar ozone adduct formation are known in the literature. Three potential decay routes of the adduct HO4- have been probed: HO4- -> HO2- + O-1(2) is spin allowed, but markedly endergonic (Delta G=23.2 kJ mol(-1)). HO4- -> HO2- + O-3(2) is spin forbidden (Delta G = -73.3 kJ mol(-1)). The decay into radicals, HO4- -> HO2 center dot + O-2(center dot-), is spin allowed and less endergonic (Delta G=14.8 kJ mol(-1)) than HO4- -> HO2- + O-1(2). It is thus HO4- -> HO2 center dot + O-2(center dot-) by which HO4- decays. It is noted that a large contribution of the reverse of this reaction, HO2 center dot + O-2(center dot-)-> HO4-, followed by HO4- -> HO2- + O-3(2), now explains why the measured rate of the bimolecular decay of HO2 center dot and O-2(center dot-) into HO2- + O-2 (k=1x10(8) m(-1) s(-1)) is below diffusion controlled. Because k for the process HO4- -> HO2 center dot + O-2(center dot-) is much larger than k for the reverse of OH- + O-3 -> HO4-, the forward reaction OH- + O-3 -> HO4- is practically irreversible.

Place, publisher, year, edition, pages
2010. Vol. 16, no 4, 1372-1377 p.
Keyword [en]
density functional calculations, kinetics, ozone, radicals, reactive intermediates
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-19251DOI: 10.1002/chem.200802539ISI: 000274910500035ScopusID: 2-s2.0-76549132125OAI: diva2:337298
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2011-01-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Merenyi, GaborLind, Johan
By organisation
Nuclear Chemistry
In the same journal
Chemistry - A European Journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 65 hits
ReferencesLink to record
Permanent link

Direct link