Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phosphate removal using blast furnace slags and opoka-mechanisms
KTH, Superseded Departments, Land and Water Resources Engineering.ORCID iD: 0000-0001-8771-7941
2000 (English)In: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 34, no 1, 259-265 p.Article in journal (Refereed) Published
Abstract [en]

The abiotic sorption efficiency of on-site wastewater treatment systems can be improved by using a strongly sorbing filter material that, if it retains phosphorus (P) in a plant available way, can be used as fertiliser when P saturation is achieved. Two materials, blast furnace slag and the siliceous sedimentary rock opoka, have shown a high P sorption capacity and were included in a set of experiments to investigate the P retention mechanisms from model P-solution. Experiments focusing on the P sorption, capacity and calcium (Ca) and PO4 determination were carried out. The pH was also measured. The P sorption experiment showed that some slags were efficient P retainers, while the opoka was the least efficient P retainer. The pH decreased in all samples as a function of P addition. In the slag samples, the Ca concentration also decreased as a function of P addition, suggesting Ca-P precipitation as the major P removal mechanism for the slag. The Ca and PO4 speciation data ruled out the formation of amorphous calcium phosphates and/or octacalcium phosphate as the major P removal mechanism. However, the calculated ion activity products displayed clear evidence that hydroxyapatite had precipitated above a certain critical supersaturation limit. This would explain the poor P retention efficiency of the opoka samples in this study as the ion activity products were too low. The finding that direct hydroxyapatite formation is the predominant P removal mechanism might have important implications for their possible use as fertiliser due to the poor solubility of hydroxyapatite.

Place, publisher, year, edition, pages
2000. Vol. 34, no 1, 259-265 p.
Keyword [en]
blast furnace slag, fertiliser, hydroxyapatite, opoka, P removal mechanisms, phosphorus
Identifiers
URN: urn:nbn:se:kth:diva-19466ISI: 000084304300029OAI: oai:DiVA.org:kth-19466DiVA: diva2:338158
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Gustafsson, Jon Petter

Search in DiVA

By author/editor
Gustafsson, Jon Petter
By organisation
Land and Water Resources Engineering
In the same journal
Water Research

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf