Change search
ReferencesLink to record
Permanent link

Direct link
Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries
Show others and affiliations
2000 (English)In: Geoderma, ISSN 0016-7061, E-ISSN 1872-6259, Vol. 94, no 04-feb, 335-353 p.Article in journal (Refereed) Published
Abstract [en]

Geochemical, mineralogical, micromorphological, microbiological, hydrochemical and hpdrological joint investigations were performed at two coniferous podzolic sites in the north of Sweden and at one in the south of Finland. Mycorrhizal fungi were found to create numerous pens (3-10-mu m diameter) in many weatherable mineral grains in the eluvial (E) horizon. During the growing season, identified low molecular weight (LMW) organic acids such as citric, shikimic, oxalic and fumaric acids comprised 0.5-5% of the DOC and 0.5-15% of the total acidity in soil solutions. Between 20% and 40% of the dissolved Al was bound to the identified LMW organic acids. Mineral dissolution via complexing LMW acids, probably exuded in part by the mycorrhiza hyphae, is likely to be a major weathering process in podzols. We found no evidence for a decreasing C/metal ratio of the migrating organo-metal complexes that could explain the precipitation of secondary Fe and AL in the illuvial (B) horizon. Instead, microbial degradation of organic ligands resulting in the release of ionic,Al and Fe to the soil solution may he an important process facilitating the formation of solid Al-SI-OH and Fe-OH phases in the podzol B horizon. However, within the B horizon transport as proto-imogilite (PI) sols might be possible. In the B horizon, the extractable,Al and Fe was predominantly inorganic. The large specific surface area (SSA) removable by oxalate extraction, the high point of zero charge salt effect (PZSE), the low cation exchange capacity (CEC) and the high sulphate exchange capacity (SEC), painted to the presence of short-range ordered variable charge phases. Imogolite type material (ITM) was indeed identified in all B horizons by IR spectroscopy and crystalline imogolite was found in the deep B horizon of one profile. Mossbauer spectroscopy indicated that Fe in the form of ferrihydrite was formed by intergrowth with an Al-Si-OH phase. The high amounts of Fe and Al transported from the O to the E horizon indicate that there could be an upward transport of these elements before they are leached to the B horizon. We hypothesize that the LMW Al complexes an transported by hyphae to the mor (O) layer, partly released and subsequently complexed by high molecular weight (HMW) acids.

Place, publisher, year, edition, pages
2000. Vol. 94, no 04-feb, 335-353 p.
Keyword [en]
podzol, spodosol, weathering, mycorrhiza, organic acid, imogolite, solution chemistry, organic-acids, aluminum, dissolution, solubility, minerals, oxalate, metal, iron, usa
URN: urn:nbn:se:kth:diva-19549ISI: 000085352500015OAI: diva2:338241
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Gustafsson, Jon Petter
By organisation
Land and Water Resources Engineering
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link