Change search
ReferencesLink to record
Permanent link

Direct link
Effects of debonding and fiber strength distribution on fatigue-damage propagation in carbon fiber-reinforced epoxy
2000 (English)In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 76, no 4, 457-474 p.Article in journal (Refereed) Published
Abstract [en]

In order to design new fatigue-resistant composites, the underlying fatigue damage mechanisms must be characterized and the controlling microstructural properties should be identified. The fatigue-damage mechanisms of a unidirectional carbon fiber-reinforced epoxy has been studied under tension-tension loading. A ubiquitous form of damage was one or a few planar fiber breaks from which debonds or shear yield zones grew in the longitudinal direction during fatigue cycling. This leads to a change in stress profile of the neighboring fibers, and an increase in failure probability of these fibers. The breakage of fibers in the composite is controlled by the fiber strength distribution. The interaction between the fiber strength distribution and debond propagation leading to further fiber breakage was investigated by a numerical simulation. It was found that a wider distribution of fiber strength and a higher debond rate lead to more distributed damage and a higher fracture toughness. Implications to fatigue life behavior are discussed, with reference to constituent microstructure.

Place, publisher, year, edition, pages
2000. Vol. 76, no 4, 457-474 p.
Keyword [en]
fatigue, mechanisms, carbon fiber/epoxy, debonding, fiber breakage, stress-concentration factors, micro-raman spectroscopy, monte-carlo simulation, 2-dimensional composites, hybrid composites, matrix composites, failure phenomena, creep-rupture, behavior, fracture
URN: urn:nbn:se:kth:diva-19588ISI: 000085583600003OAI: diva2:338280
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Gamstedt, E. Kristofer
In the same journal
Journal of Applied Polymer Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link