Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical investigation of bubble coalescence characteristics under nucleate boiling condition by a lattice-Boltzmann model
KTH, Superseded Departments, Physics.
2000 (English)In: International journal of thermal sciences, ISSN 1290-0729, E-ISSN 1778-4166, Vol. 39, no 1, 1-17 p.Article in journal (Refereed) Published
Abstract [en]

A numerical study was performed to investigate the characteristics of bubble growth, detachment and coalescence on vertical, horizontal, and inclined downward-facing surfaces. The FlowLab code, which is based on a lattice-Boltzmann model of two-phase flows, was employed. Macroscopic properties, such as surface tension (sigma) and contact angle (beta), were implemented through the fluid-fluid (G(sigma)) and fluid-solid (G(t)) interaction potentials. The model predicted a linear relationship between the macroscopic properties (sigma, beta) and microscopic parameters (G(sigma), G(t)). The simulation results on bubble departure diameter appear to have the same parametric dependence as the empirical correlation. Hydrodynamic aspects of bubble coalescence are investigated by simulating the growth and detachment behavior of multiple bubbles generated on horizontal, vertical, and inclined downward-facing surfaces. For the case of horizontal surface, three distinct. regimes of bubble coalescence were represented in the lattice-Boltzmann simulation: lateral coalescence of bubbles situated on the surface; vertical coalescence of bubbles detached in a sequence from a site; and lateral coalescence of bubbles, detached from the surface. Multiple coalescence was predicted on the vertical surface as the bubble detached from a lower elevation merges with the bubble forming on a higher site. The bubble behavior on the inclined downward-facing surface was represented quite similar to that in the nucleate boiling regime on a downward facing surface.

Place, publisher, year, edition, pages
2000. Vol. 39, no 1, 1-17 p.
Keyword [en]
two-phase flow, nucleate boiling, bubble coalescence, lattice-Boltzmann, critical heat-flux, pool, equation
Identifiers
URN: urn:nbn:se:kth:diva-19644ISI: 000086008100001OAI: oai:DiVA.org:kth-19644DiVA: diva2:338336
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Dinh, Truc-Nam
By organisation
Physics
In the same journal
International journal of thermal sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf