Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Artin level modules
KTH, Superseded Departments, Mathematics.ORCID iD: 0000-0002-9961-383X
2000 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 226, no 1, 361-374 p.Article in journal (Refereed) Published
Abstract [en]

We introduce level modules and show that these form a natural class of modules over a polynomial ring. We prove that there exist compressed level modules, i.e., level modules with the expected maximal Hilbert function, given socle type and the number of generators. We also show how to use the theory of level modules to compute minimal free resolutions of the coordinate ring of points from the back, which reveals new examples where random sets of points fail to satisfy the minimal resolution conjecture.

Place, publisher, year, edition, pages
2000. Vol. 226, no 1, 361-374 p.
Keyword [en]
graded algebra, graded module, level ring, level algebra, Gorenstein algebra, Cohen-Macaulay ring, compressed algebra, Hilbert function, Betti numbers, unimodality, minimal resolution conjecture, canonical module, Matlis duality, compressed algebras, points
Identifiers
URN: urn:nbn:se:kth:diva-19660ISI: 000086254000021OAI: oai:DiVA.org:kth-19660DiVA: diva2:338352
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Boij, Mats

Search in DiVA

By author/editor
Boij, Mats
By organisation
Mathematics
In the same journal
Journal of Algebra

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf