References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Face numbers of Scarf complexesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2000 (English)In: Discrete & Computational Geometry, ISSN 0179-5376, E-ISSN 1432-0444, Vol. 24, no 3-Feb, 185-196 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2000. Vol. 24, no 3-Feb, 185-196 p.
##### Keyword [en]

resolutions, polytopes, sets
##### Identifiers

URN: urn:nbn:se:kth:diva-19849ISI: 000087814300005OAI: oai:DiVA.org:kth-19849DiVA: diva2:338541
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Let A be a (d + 1) x d real matrix whose row vectors positively span R-d and which is generic in the sense of Barany and Scarf [BS1]. Such a matrix determines a certain infinite d-dimensional simplicial complex Sigma, as described by Barany et al. [BHS]. The group Z(d) acts on Sigma with finitely many orbits. Let f(i) be the number of orbits of (i + 1)-simplices of Sigma. The sequence f = (f(0), f(1),..., f(d-1)) is the f-vector of a certain triangulated (d - 1)-ball T embedded in Sigma. When A has integer entries it is also, as shown by the work of Peeva and Sturmfels [PS], the sequence of Betti numbers of the minimal free resolution of k[x(1),...,x(d+1)]/I, where I is the lattice ideal determined by A. In this paper we study relations among the numbers f(i). It is shown that f(0), f(1),..., f([(d-3)/2]) determine the other numbers via linear relations, and that there are additional nonlinear relations. In more precise (and more technical) terms, our analysis shows that f is linearly determined by a certain M-sequence (g(0), g(1),..., g([(d-1)/2])). namely, the g-vector of the (d - 2)-sphere bounding T. Although T is in general not a cone over its boundary, it turns out that its f-vector behaves as if it were.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});