Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of sintering procedures in development of LiCoO2-cathodes for the molten carbonate fuel cell
KTH, Superseded Departments, Chemical Engineering and Technology.
2000 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 90, no 2, 224-230 p.Article in journal (Refereed) Published
Abstract [en]

LiCoO2-powder was synthesized from carbonate precursors by calcination in air. Greentapes were tape-cast using a non-aqueous slurry and 10 mu m plastic spheres as pore formers. Sintering was carried out in air at 850-950 degrees C and in argon/air at 500/750 degrees C, The two sintering procedures led to very different sub-micron morphologies, with the primary particles being much smaller in the latter case. The electrochemical performance at 650 degrees C, in terms of overpotential at 160 mA/cm(2), for the air- and argon/air-sintered electrodes was 57 and 81 mV, respectively. The potential drop due to contact resistance between electrode and current collector was estimated to be 100 and 70 mV, respectively. The electrode materials were characterized by scanning electron microscopy (SEM), Hg-porosimetry, the BET-method (N-2-adsorption), X-ray diffractometry (XRD), flame atomic absorption spectrometry (F-AAS), carbon analysis and a van der Pauw conductivity measurement set-up.

Place, publisher, year, edition, pages
2000. Vol. 90, no 2, 224-230 p.
Keyword [en]
MCFC, LiCoO2, gas diffusion electrodes, sintering, cathode materials, licoo2 cathodes, performance, precursors
Identifiers
URN: urn:nbn:se:kth:diva-20013ISI: 000089127700016OAI: oai:DiVA.org:kth-20013DiVA: diva2:338706
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lundblad, Anders
By organisation
Chemical Engineering and Technology
In the same journal
Journal of Power Sources

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf