Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Existence of classical solutions to a free boundary problem for the p-Laplace operator: (II) The interior convex case
KTH, Superseded Departments, Mathematics.ORCID iD: 0000-0002-1316-7913
2000 (English)In: Indiana University Mathematics Journal, ISSN 0022-2518, E-ISSN 1943-5258, Vol. 49, no 1, 311-323 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we prove the existence of convex classical solutions for a Bernoulli-type free boundary problem, in the interior of a convex domain. The governing operator considered is the p-Laplacian. This work is inspired by the pioneering work of A. Beurling where he proves the existence for the harmonic case in the plane, using the notion of sub- and super-solutions in a geometrical sense.

Place, publisher, year, edition, pages
2000. Vol. 49, no 1, 311-323 p.
Keyword [en]
equations
Identifiers
URN: urn:nbn:se:kth:diva-20019ISI: 000089184800012OAI: oai:DiVA.org:kth-20019DiVA: diva2:338712
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Shahgholian, Henrik.

Search in DiVA

By author/editor
Shahgholian, Henrik.
By organisation
Mathematics
In the same journal
Indiana University Mathematics Journal

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf