Change search
ReferencesLink to record
Permanent link

Direct link
Mathematical model of the PEMFC
KTH, Superseded Departments, Chemical Engineering and Technology.ORCID iD: 0000-0001-9203-9313
2000 (English)In: Journal of Applied Electrochemistry, ISSN 0021-891X, E-ISSN 1572-8838, Vol. 30, no 12, 1377-1387 p.Article in journal (Refereed) Published
Abstract [en]

A two-dimensional along-the-channel mass and heat transfer model for a proton exchange membrane fuel cell (PEMFC) is described. The model is used for calculation of cell performance (i.e., cell voltage against current density), ohmic resistance and water profile in the membrane, current distribution and variation of temperature along the gas channels. The following fuel cell regions are considered: gas channels, electrode backings and active layers at the anode and cathode side, and a proton exchange membrane. The model includes mass transfer in the gas channels and electrode gas backings, water transport in the membrane, electrode kinetics and heat transfer. Temperature in the cell is assumed to vary only along the gas channels, which means that it is the same at the anode and cathode and in the solid phase at a specified value of the channel coordinate. Electrode kinetics are considered only at the cathode, where major losses occur, whereas the anode potential is assumed to be equal to its equilibrium value. An agglomerate approach is used for the description of the active layer of the cathode. Simulations are carried out for different humidities of inlet gases, several different stoichiometric amounts of reactants and cooling media (air, water) with different heat transfer coefficients. Analysis of the results showed that the best performance of the PEMFC was obtained for well-humidified gases at conditions close to isothermal and at a stoichiometry of gases only somewhat higher than that corresponding to complete reactant consumption.

Place, publisher, year, edition, pages
2000. Vol. 30, no 12, 1377-1387 p.
Keyword [en]
heat transfer, mathematical model, PEMFC, proton exchange membrane fuel cell, water management, electrolyte fuel-cell, water-uptake, membrane, performance, stack, management
URN: urn:nbn:se:kth:diva-20212ISI: 000165788500007OAI: diva2:338905
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lindbergh, Göran
By organisation
Chemical Engineering and Technology
In the same journal
Journal of Applied Electrochemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 65 hits
ReferencesLink to record
Permanent link

Direct link