Change search
ReferencesLink to record
Permanent link

Direct link
Review of the European project - Impact of Accelerator-Based Technologies on Nuclear Fission Safety (IABAT)
KTH, Superseded Departments, Physics.
Show others and affiliations
2001 (English)In: Progress in nuclear energy (New series), ISSN 0149-1970, Vol. 38, no 1-2, 135-151 p.Article in journal (Refereed) Published
Abstract [en]

The IABAT project - Impact of Accelerator Based Technologies on Nuclear Fission Safety - started in 1996 in the frame of 4(th) Framework Programme of the European Union, R&D specific programme Nuclear fission safety 1994-1998, area A.2 Exploring innovative approaches/Fuel cycle concepts, as one of the first common European activities in ADS. The project was completed October 31, 1999. The overall objective of the IABAT project has been a preliminary assessment of the potential of Accelerator-Driven Systems (ADS) for transmutation of nuclear waste and for nuclear energy production with minimum waste generation. Moreover, more specific topics related to nuclear data and code development for ADS have been studied in more detail. Four ADSs have been studied for different fuel/coolant combinations: liquid metal coolant and solid fuel, liquid metal coolant and dispersed fuel, and fast and thermal molten salt systems. Target studies comprised multiple target solutions and radiation damage problems in a target environment. In a tool development part of the project a methodology of subcriticality monitoring has been developed based on Feynman-alpha and Rossi-alpha methods. Moreover, a new Monte-Carlo burnup code taking full advantage of continuous neutron cross-section data has been developed and benchmarked. Impact on the risk from high-level waste repositories fi om radiotoxicity reduction using ADS has been assessed giving no crystal-clear benefits of ADS for repository radiotoxicity reduction but concluding some important prerequisites for effective transmutation. In proliferation studies important differences between critical reactors and ADS have been underlined and non-proliferation measures have been proposed. In assessment of accelerator technology costing models have been created that allow the circular and linear accelerator options to be compared and the effect of parameter variations examined. The calculations reported show that cyclotron systems would be more economical, due mainly to the advantage of the cost of RF power supplies. However, the accelerator community regards with skepticism the possibility of transporting and extracting more than a 10mA beam current from a 1GeV cyclotron and therefore technical factors may limit the application of cyclotrons. Finally, this review summarizes development of nuclear data in the energy region between 20 Mev and 150 MeV. Neutron and proton transport data files for Fe, Ni, Pb, Th, U-238 and Pu-239 have been created. The high-energy part of the data files consists completely of results from model calculations, which are benchmarked against the available experimental data. Although there is obviously future work left regarding fine-tuning of several parts of the data files, the representation of nuclear reaction information up to 150 MeV is already better than can be attained with intranuclear cascade codes.

Place, publisher, year, edition, pages
2001. Vol. 38, no 1-2, 135-151 p.
URN: urn:nbn:se:kth:diva-20292ISI: 000166450400007OAI: diva2:338986
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Gudowski, WaclawArzhanov, VasilyWallenius, Janne
By organisation
In the same journal
Progress in nuclear energy (New series)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link