Change search
ReferencesLink to record
Permanent link

Direct link
Resistivity analysis on n-semi-insulating-n and p-semi-insulating-p structures exemplified with semi-insulating InP
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0002-0977-2598
2001 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 89, no 7, 4004-4009 p.Article in journal (Refereed) Published
Abstract [en]

Current-voltage characteristic in semi-insulating (SI) InP layers sandwiched between n- or p-type layers have been simulated. Deep acceptor and deep donor levels were considered. A one-dimensional two-carrier numerical model was used, which takes into account carrier diffusion and Shockley-Read-Hall recombination through the deep traps. The current-voltage behavior is studied in the linear ohmic regime in order to deduce the resistivity, which is analyzed and compared to values obtained from equilibrium calculations. The simulations predict an increased resistivity for n-SI-n and a decreased resistivity for p-SI-p structures, while increasing the concentration of deep acceptors. Furthermore, a maximum in the resistivity as a function of the trap concentration is found for an n-SI-n structure, which accommodates electron injection. In addition, the influence of the position of the deep acceptor in the band gap on the resistivity is analyzed, and it is shown that it significantly affects the behavior when comparing n-SI-n and p-SI-p structures. Incorporating a deep donor level along with a deep acceptor level will improve the SI behavior of the p-SI-p structure, whereas a slight drop in resistivity occurs for the n-SI-n structure. Our predicted electrical behavior from simulation is found to be in accordance with the previously published experimental results in InP:Fe and InP:Fe,Ti.

Place, publisher, year, edition, pages
2001. Vol. 89, no 7, 4004-4009 p.
Keyword [en]
vapor-phase epitaxy, chemical beam epitaxy, fe-doped inp, blocking layers, gaas, iron, deposition, compensation, behavior, lasers
URN: urn:nbn:se:kth:diva-20458ISI: 000167610900075OAI: diva2:339153
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lourdudoss, Sebastian
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Journal of Applied Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link