Change search
ReferencesLink to record
Permanent link

Direct link
On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part I: The model, solution and experimental comparison
KTH, Superseded Departments, Vehicle Engineering.ORCID iD: 0000-0001-5760-3919
2001 (English)In: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 244, no 2, 211-233 p.Article in journal (Refereed) Published
Abstract [en]

A waveguide model of the axial dynamic stiffness for cylindrical vibration isolators in the audible frequency range is presented. The problems of satisfying the cylinder boundary conditions simultaneously are removed, by adopting the mode-matching technique, using the dispersion relation for an infinite cylinder and approximately satisfying the boundary conditions at the lateral surfaces by a circle-wise fulfilment or a subregion method. The rubber material is assumed to be nearly incompressible with deviatoric viscoelasticity based on a fractional order derivative model. The main advantage of the viscoelastic model is the minimum parameter number required to model the material properties successfully over a broad structure-borne sound frequency domain. The work is verified by experiments on a rubber cylinder, equipped with bonded circular steel plates, in the frequency range 100-5000 Hz. The model and the measurements are shown to agree strikingly well within the whole frequency range. Comparisons with alternative material models, known as the Kelvin-Voigt and frequency-independent or 'hysteric' material models, are made. The results are shown to diverge substantially from the presented material model; in particular, the Kelvin-Voigt model overestimates the material damping in the high-frequency region, while the frequency-independent model underestimates it. In addition, the resonance and anti-resonance frequencies are incorrectly predicted. In a companion paper the dispersion relation solution, convergence analysis and comparison with simple models are addressed.

Place, publisher, year, edition, pages
2001. Vol. 244, no 2, 211-233 p.
Keyword [en]
fractional calculus
National Category
Applied Mechanics
URN: urn:nbn:se:kth:diva-20749DOI: 10.1006/jsvi.2000.3468ISI: 000169586300003OAI: diva2:339446
QC 20100525 NR 20140804Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2012-02-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kari, Leif
By organisation
Vehicle Engineering
In the same journal
Journal of Sound and Vibration
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link