Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhanced passivity of austenitic AISI 304 stainless steel by low-temperature ion nitriding
KTH, Superseded Departments, Materials Science and Engineering.ORCID iD: 0000-0002-4431-0671
KTH, Superseded Departments, Materials Science and Engineering.ORCID iD: 0000-0003-2206-0082
KTH, Superseded Departments, Materials Science and Engineering.ORCID iD: 0000-0002-9453-1333
Show others and affiliations
2001 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 19, no 4, 1425-1431 p.Article in journal (Refereed) Published
Abstract [en]

Low-temperature ion nitriding introduces interstitial nitrogen into the austenitic stainless steel matrix. An enhanced passivity of the nitrided stainless steel was detected by anodic potentiodynamic polarization in a 0.1 M H2SO4 + 0.05 M HCl electrolyte. Capacitance measurements by electrochemical impedance spectroscopy revealed a 3-4 nm thick oxide film on the surface of nitrided specimens that is two to three times thicker than on blank specimens. X-ray photoelectron spectroscopy analyses and Auger depth profiles indicate increased chromium uptake into the oxide film on the nitrided surface, supposedly through the kinetically stable oxide-metal interface enriched with nitrogen and nickel. Several possible mechanisms that influence passivation of the nitrided stainless steel may operate simultaneously. Among these mechanisms, austenite strengthening by interstitial nitrogen near the oxide/alloy interface associated with structural defects like dislocation branches and vacancies are most likely the explanation for the enhanced passivity of the nitrided stainless steel.

Place, publisher, year, edition, pages
2001. Vol. 19, no 4, 1425-1431 p.
Keyword [en]
ray photoelectron-spectroscopy, pitting corrosion-resistance, nitrogen, passivation, films, molybdenum, behavior, xps, implantation, synergism
Identifiers
URN: urn:nbn:se:kth:diva-20826ISI: 000170110900073OAI: oai:DiVA.org:kth-20826DiVA: diva2:339523
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Pan, JinshanOdnevall Wallinder, IngerLeygraf, Christofer

Search in DiVA

By author/editor
Pan, JinshanOdnevall Wallinder, IngerLeygraf, Christofer
By organisation
Materials Science and Engineering
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf