Change search
ReferencesLink to record
Permanent link

Direct link
Molecular dynamics simulation of NMR relaxation rates and slow dynamics in lipid bilayers
KTH, Superseded Departments, Physics.ORCID iD: 0000-0002-7448-4664
2001 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 115, no 10, 4938-4950 p.Article in journal (Refereed) Published
Abstract [en]

By performing a 100 ns molecular dynamics simulation of a dipalmitoylphosphatidylcholine lipid bilayer we are able to calculate the full rotational correlation functions of the hydrocarbon chain C-H vectors and determine rotational diffusion of entire lipid molecules with high accuracy. The simulated relaxation is strongly nonexponential already on time scales from 0.1 ps. Fourier transformation of the correlation functions yields data that in the relatively narrow frequency range accessible to H-2 and C-13 NMR experiments are consistent with the reported 1/root omega dependence of spin-lattice relaxation rates. The simulated relaxation dynamics is found to be slightly faster than experimental, which we suggest is explained by the limited accuracy in dihedral potentials of present force fields. By introducing a local frame of reference, the chain motion is separated into local dihedral transitions and overall lipid reorientation. The internal chain isomerization dominates the relaxation and is well-described by power laws. The small molecular reorientation contribution to the decay is exponential with separate time scales for motions of the lipid long axis (D-perpendicular to = 2.9 x 10(7) s(-1)) and spinning rotation around it (D-parallel to = 3.8 x 10(8) s(-1)). The mean square lateral displacement over 100 ns, corrected for the relative motions of the layers, corresponds to a long-time translational diffusion coefficient of D-lat = 1.2 x 10(-7) cm(2) s(-1) at 323 K.

Place, publisher, year, edition, pages
2001. Vol. 115, no 10, 4938-4950 p.
Keyword [en]
nuclear-magnetic-resonance, spin-lattice relaxation, entropy-driven tension, brownian-motion, angular-dependence, light-scattering, membranes, fluid, diffusion, vesicles
URN: urn:nbn:se:kth:diva-20905ISI: 000170647600059OAI: diva2:339602
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Edholm, Olle
By organisation
In the same journal
Journal of Chemical Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link