Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On quantum ergodicity for linear maps of the torus
2001 (English)In: Communications in Mathematical Physics, ISSN 0010-3616, E-ISSN 1432-0916, Vol. 222, no 1, 201-227 p.Article in journal (Refereed) Published
Abstract [en]

We prove a strong version of quantum ergodicity for linear hyperbolic maps of the torus (cat maps). We show that there is a density one sequence of integers so that as N tends to infinity along this sequence., all eigenfunctions of the quantum propagator at inverse Planck constant N are uniformly distributed. A key step in the argument is to show that for a hyperbolic matrix in the modular group. there is a density one sequence of integers N for which its order (or period) modulo N is somewhat larger than rootN.

Place, publisher, year, edition, pages
2001. Vol. 222, no 1, 201-227 p.
Keyword [en]
eigenfunctions, quantization
Identifiers
URN: urn:nbn:se:kth:diva-20927ISI: 000170888900008OAI: oai:DiVA.org:kth-20927DiVA: diva2:339624
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Kurlberg, Pär

Search in DiVA

By author/editor
Kurlberg, Pär
In the same journal
Communications in Mathematical Physics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf