Change search
ReferencesLink to record
Permanent link

Direct link
A direct simulation of EPR slow-motion spectra of spin labelled phospholipids in liquid crystalline bilayers based on a molecular dynamics simulation of the lipid dynamics
KTH, Superseded Departments, Physics.ORCID iD: 0000-0002-7448-4664
2001 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 3, no 23, 5311-5319 p.Article in journal (Refereed) Published
Abstract [en]

EPR line shapes can be calculated from the stochastic Liouville equation assuming a stochastic model for the reorientation of the spin probe. Here we use instead and for the first time a detailed molecular dynamics (MD) simulation to generate the stochastic input to the Langevin form of the Liouville equation. A 0.1 mus MD simulation at T = 50 degreesC of a small lipid bilayer formed by 64 dipalmitoylphosphatidylcholine (DPPC) molecules at the water content of 23 water molecules per lipid was used. In addition, a 10 ns simulation of a 16 times larger system consisting of 32 DPPC molecules with a nitroxide spin moiety attached at the sixth position of the sn2 chain and 992 ordinary DPPC molecules, was used to investigate the extent of the perturbation caused by the spin probe. Order parameters, reorientational dynamics and the EPR FID curve were calculated for spin probe molecules and ordinary DPPC molecules. The timescale of the electron spin relaxation for a spin-moiety attached at the sixth carbon position of a DPPC lipid molecule is 11.9 x 10(7) rad s(-1) and for an unperturbed DPPC molecule it is 3.5 x 10(7) rad s(-1).

Place, publisher, year, edition, pages
2001. Vol. 3, no 23, 5311-5319 p.
Keyword [en]
restricted rotational diffusion, resonance-spectra, computer-simulation, water-systems, membranes, dipalmitoylphosphatidylcholine, model, trajectories, hydration, cone
URN: urn:nbn:se:kth:diva-21132ISI: 000172414400036OAI: diva2:339829
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Edholm, Olle
By organisation
In the same journal
Physical Chemistry, Chemical Physics - PCCP

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 15 hits
ReferencesLink to record
Permanent link

Direct link