Change search
ReferencesLink to record
Permanent link

Direct link
Hydrochemical modelling for preliminary assessment of minewater pollution
KTH, Superseded Departments, Civil and Environmental Engineering.ORCID iD: 0000-0002-4530-3414
2001 (English)In: Journal of Geochemical Exploration, ISSN 0375-6742, Vol. 74, no 03-jan, 73-97 p.Article in journal (Refereed) Published
Abstract [en]

A conceptual model for preliminary assessment of minewater pollution within the risk-based corrective action (RBCA) framework for environmental management is developed. The model aims to assist classification of a site regarding the potential threat to the environment and help assess whether the assumptions used in this classification are appropriate. The model estimates contamination source strength, longevity and possible future changes in discharge quality and can be applied with sparse data sets. The model relates solute export in the discharge to source minerals which includes sulphide phases that produce acidity and metals contamination and carbonate and aluminosilicate phases which provide natural attenuation to neutralise acidity and immobilise metals. We present and apply limited data from three sites representing a mine rock waste deposit located above the water table, a flooded abandoned coal mine with deep workings and a mine tailings deposit. Results from the rock waste deposit indicate that calcite no longer provides significant attenuation of the present acidity load and that acid generation and associated loads of Cu2+ may persist for a period of up to two centuries. The abandoned coal mine has a discharge that is presently alkaline, with calcite depletion expected to occur before pyrite is consumed, possibly yielding a future drop in pH. The lifetime for these minerals is similar at this site, and on the order of several centuries, thus rendering the estimate of future water quality evolution very uncertain. The mill tailings deposit is expected to produce acidic discharge on a time scale of one century. However, conclusive quantification of calcite weathering was not possible, leaving open the possibility that the weathering of Mg-silicate minerals provides important attenuation of the present acidity load.

Place, publisher, year, edition, pages
2001. Vol. 74, no 03-jan, 73-97 p.
Keyword [en]
hydrochemical modelling, minewater, pollution, risk assessment, mining waste rock, hydrogen-peroxide oxidation, acid-mine drainage, generation, tailings, kinetics, sweden, rates, ph
URN: urn:nbn:se:kth:diva-21153ISI: 000172551500004OAI: diva2:339850
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Malmström, Maria E.
By organisation
Civil and Environmental Engineering
In the same journal
Journal of Geochemical Exploration

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link