Change search
ReferencesLink to record
Permanent link

Direct link
Polyelectrolyte-mediated interaction between similarly charged surfaces: Role of divalent counter ions in tuning surface forces
KTH, Superseded Departments, Chemistry.
Show others and affiliations
2001 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 17, no 26, 8321-8327 p.Article in journal (Refereed) Published
Abstract [en]

The effects of divalent salts (CaCl2, MgCl2 and BaCl2) in promoting the adsorption of weakly charged polyelectrolyte (polyacrylic acid), PAA, Mw similar to 250000 g/mol) on mica surfaces and their role in tuning the nature of interactions between such adsorbed polyelectrolyte layers were studied using the interferometric surface forces apparatus. With mica surfaces in 3 mM MgCl2 solutions at pH similar to8.0-9.0, the addition of 10 ppm PAA resulted in a long-range attractive bridging force and a short-range repulsive steric force. This force profile indicates a low surface coverage and weak adsorption. The range of the force can be related to the characteristic length scale R-G of polyelectrolyte chains using a scaling description. An increase of the PAA concentration to 50 ppm changed the attractive force profile to a monotonic, long-range repulsive interaction extending up to 600 Angstrom due to the increased surface coverage of polyelectrolyte chains on the mica surfaces. Comparison of the measured forces with a scaling mean field model suggests that the adsorbed polyelectrolyte chains are stretched, which eventually give rise to the polyelectrolyte brush like structure. When the mica surfaces were preincubated in 3 mM CaCl2 at pH similar to8.0-9.0, in contrast to the case of 3 MM MgCl2, the addition of 10 ppm PAA resulted in a more complex force profile: long-range repulsive forces extending up to 800 Angstrom followed by an attractive force regime and a second repulsive force regime at shorter separations. The long-range electrosteric forces can be attributed to strong adsorption of polyelectrolyte chains on mica surfaces (high surface coverage) which is facilitated by the presence of Ca2+ ions, while the intermediate range attractive forces can be ascribed to Ca2+ assisted bridging between adsorbed polyelectrolyte chains. Also interesting is to note various relaxation processes present in this system. In contrast to both MgCl2 and CaCl2 systems, with mica surfaces in 3 mM BaCl2 solution at pH similar to8.0-9.0, the addition of 10 ppm PAA resulted in precipitation of polyelectrolyte chains on mica surfaces, resulting in an extremely long-range monotonic repulsive force profile. In summary, our study showed that divalent counterions (Mg2+, Ca2+, and Ba2+) exhibit significantly different behavior in promoting PAA adsorption on mica surfaces, modifying and controlling various surface interactions.

Place, publisher, year, edition, pages
2001. Vol. 17, no 26, 8321-8327 p.
Keyword [en]
2 surfaces, adsorption, polymer, brush, stabilization, microscopy, strength, layers
URN: urn:nbn:se:kth:diva-21201DOI: 10.1021/la011037fISI: 000172956200058OAI: diva2:339898
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rutland, Mark WClaesson, Per M.
By organisation
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 72 hits
ReferencesLink to record
Permanent link

Direct link