Change search
ReferencesLink to record
Permanent link

Direct link
The rate of homolysis of adducts of peroxynitrite to the C=O double bond
KTH, Superseded Departments, Chemistry.
KTH, Superseded Departments, Chemistry.
2002 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 124, no 1, 40-48 p.Article in journal (Refereed) Published
Abstract [en]

Nucleophilic additon of the peroxynitrite anion, ONOO-, to the two prototypical carbonyl compounds, acetalclehyde and acetone, was investigated in the pH interval 7.4-14. The process is initiated by fast equilibration between the reactants and the corresponding tetrahedral adduct anion, the equilibrium being strongly shifted to the reactant side. The adduct anion also undergoes fast protonation by water and added buffers. Consequently, the rate of the bimolecular reaction between ONOO- and the carbonyl is strongly dependent on the pH and on the concentration of the buffer. The pK(a) of the carbonyl-ONOO adduct was estimated to be similar to11.8 and similar to12.3 for acetone and acetaldehyde, respectively. It is shown that both the anionic and the neutral adducts suffer fast homolysis along the weak O-O bond to yield free alkoxyl and nitrogen dioxide radicals. The yield of free radicals was determined to be about 15% with both carbonyl compounds at low and high pH, while the remainder collapses to molecular products in the solvent cage, The rate constants for the homolysis of the adducts vary from ca. 3 x 10(5) to ca. 5 x 10(6) s(-1), suggesting that they cannot act as oxidants in biological systems. This small variation around a mean value of about 10(6) s(-1) suggests that the O-O bond in the adduct is rather insensitive to its protonation state and to the nature of its carbonyl precursor. An overall reaction scheme was proposed, and all the corresponding rate constants were evaluated. Finally, thermokinetic considerations were employed to argue that the formation of dioxirane as an intermediate in the reaction of ONOO- with acetone is an unlikely process.

Place, publisher, year, edition, pages
2002. Vol. 124, no 1, 40-48 p.
Keyword [en]
ketone-catalyzed decomposition, biological-activity, aqueous-solutions, pulse-radiolysis, carbon-dioxide, acid, radicals, mechanisms, oxidation, decay
URN: urn:nbn:se:kth:diva-21255DOI: 10.1021/ja011799xISI: 000173217900017OAI: diva2:339953
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Merenyi, GaborLind, Johan
By organisation
In the same journal
Journal of the American Chemical Society

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link