Change search
ReferencesLink to record
Permanent link

Direct link
Investigation of mass-transport limitations in the solid polymer fuel cell cathode - I. Mathematical model
KTH, Superseded Departments, Chemical Engineering and Technology.ORCID iD: 0000-0001-9203-9313
2002 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, Vol. 149, no 4, A437-A447 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, a one-dimensional, steady-state agglomerate model was used to describe the functioning and the mass transport limitations of the cathode in the solid polymer fuel cell (SPFC). This mathematical model is then compared to experimental results obtained on cathodes in an SPFC. The following processes were considered: Tafel kinetics of the oxygen reduction reaction, proton migration, oxygen diffusion in the agglomerates, and diffusion of a ternary gas mixture O-2/N-2/water vapor in the pores of the active layer and of the gas backing. The model shows that limitation by proton migration in the active layer or by oxygen diffusion in the agglomerates leads to a doubling of the Tafel slope at higher current densities. For those two types of transport limitations, the dependence of the reaction rate on the active-layer thickness, oxygen partial pressure, and relative humidity of the gas were simulated. When additional limitation due to slow gas phase diffusion appears, the double Tafel slope is distorted. A mathematical expression for the limiting current density due to this process is presented. By using this expression, it is possible to correct the polarization curves for slow gas phase diffusion.

Place, publisher, year, edition, pages
2002. Vol. 149, no 4, A437-A447 p.
Keyword [en]
gas-diffusion electrodes, oxygen reduction, proton conductivity, exchange membranes, catalyst layer, water-uptake, performance, nafion(r), permeation, dependence
URN: urn:nbn:se:kth:diva-21393DOI: 10.1149/1.1456916ISI: 000174499700013OAI: diva2:340091
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindbergh, Göran
By organisation
Chemical Engineering and Technology
In the same journal
Journal of the Electrochemical Society

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link