Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Two-electron transfer for Tl(aq)(3+)/Tl(aq)(+) revisited. Common virtual Tl-II-Tl-III (4+) intermediate for homogeneous (superexchange) and electrode (sequential) mechanisms
KTH, Superseded Departments, Chemical Engineering and Technology.ORCID iD: 0000-0001-9203-9313
Show others and affiliations
2002 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 41, no 7, 1728-1738 p.Article in journal (Refereed) Published
Abstract [en]

Homogeneous and electrochemical two-electron transfers within the TI(aq)(3+)/TI(aq)(+) couple are considered on a common conceptual basis. For the 2 equiv electrochemical reduction of TI(aq)(3) to TI(aq)(+), the intermediate state with a formal reduction potential, E-1* = 1.04 +/- 0.10 V vs the normal hydrogen electrode, was detected, different from the established value of 0.33 V for a TI3+/TI2+ couple. Examination of obtained electrochemical (cyclic voltammetry (CV) and rotating disk electrode techniques, along with the CV-curve computer simulation procedure) and literature data indicate that the detected formal potential cannot be the property of electrode-adsorbed species, but rather of the covalently interacting dithallium intermediate [TI11-TI11](4+) located at the outer Helmholtz plane. The analysis of microscopic mechanisms, based on the recent hypothesis of H. Taube and the Marcus-Hush theory extended by Zusman and Beratan, and Koper and Schmickler, revealed that the homogeneous process most probably takes place through the superexchange inner-sphere two-electron-transfer mechanism, via an essentially virtual (undetectable) dithallium intermediate. In contrast, the electrochemical process occurs through a sequential mechanism, via the rate-determining step of TI(aq)(2+) ion formation immediately followed by activationless formation of the metastable (CV-active) dithallium state. The second electrochemical electron-transfer step is fast, and shows up only in the peak height (but not in the shape) of the observed CV cathodic wave, The anodic wave for a microscopically reverse process of the oxidation of TI(aq)(+) to TI(aq)(3+) cannot be observed within the considered potential range due to the blocking of through-space electron transfer by the competitor process of ion transfer to the electrode.

Place, publisher, year, edition, pages
2002. Vol. 41, no 7, 1728-1738 p.
Keyword [en]
2-electron transfer-reactions, acidic aqueous-solution, equilibrium dynamics, thallium, energy, complexes, platinum, kinetics, bromide, system
Identifiers
URN: urn:nbn:se:kth:diva-21434DOI: 10.1021/ic0100525ISI: 000174778100009OAI: oai:DiVA.org:kth-21434DiVA: diva2:340132
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lindbergh, Göran

Search in DiVA

By author/editor
Lindbergh, GöranGlaser, Julius
By organisation
Chemical Engineering and TechnologyChemistry
In the same journal
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf