Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A geometrical version of Hardy's inequality
KTH, Superseded Departments, Mathematics.
2002 (English)In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 189, no 2, 539-548 p.Article in journal (Refereed) Published
Abstract [en]

We prove a version of Hardy's type inequality in a domain Omega subset of R-n which involves the distance to the boundary and the volume of Omega. In particular, we obtain a result which gives a positive answer to a question asked by H. Brezis and M. Marcus.

Place, publisher, year, edition, pages
2002. Vol. 189, no 2, 539-548 p.
Identifiers
URN: urn:nbn:se:kth:diva-21438DOI: 10.1006/jfan.2001.3859ISI: 000174797400009OAI: oai:DiVA.org:kth-21438DiVA: diva2:340136
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Laptev, Ari
By organisation
Mathematics
In the same journal
Journal of Functional Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf