Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The influence of band offsets on the IV characteristics for GaN/SiC heterojunctions
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0001-8108-2631
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0002-5845-3032
Show others and affiliations
2002 (English)In: Solid-State Electronics, ISSN 0038-1101, E-ISSN 1879-2405, Vol. 46, no 6, 827-835 p.Article in journal (Refereed) Published
Abstract [en]

GaN/SiC heterojunctions can improve the performance considerably for bipolar transistors based on SiC technology. In order to fabricate such devices with a high current gain, the origin of the low turn-on voltage for the heterojunction has to be investigated, which is believed to decrease the minority carrier injection considerably. In this work heterojunction diodes are compared and characterized. For the investigated diodes, the GaN layers have been grown by molecular beam epitaxy (MBE), metal organic chemical vapor deposition, and hydride vapor phase epitaxy. A diode structure fabricated with MBE is presented here, whereas others are collected from previous publications. The layers were grown either with a low temperature buffer, AIN buffer, or without buffer layer. The extracted band offsets are compared and included in a model for a recombination process assisted by tunneling, which is proposed as explanation for the low turn-on voltage. This model was implemented in a device simulator and compared to the measured structures, with good agreement for the diodes with a GaN layer grown without buffer layer. In addition the band offset has been calculated from Schottky barrier measurements, resulting in a type II band alignment with a conduction band offset in the range 0.6-0.9 eV. This range agrees well with the values extracted from capacitance-voltage measurements.

Place, publisher, year, edition, pages
2002. Vol. 46, no 6, 827-835 p.
Keyword [en]
GaN/SiC heterojunction, band offset, midgap theory, schottky-barrier height, bipolar junction transistors, n-p heterojunctions, metal contacts, power devices, gan, dependence, carbide, diodes
Identifiers
URN: urn:nbn:se:kth:diva-21574ISI: 000175817800008OAI: oai:DiVA.org:kth-21574DiVA: diva2:340272
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Zetterling, Carl-Mikael

Search in DiVA

By author/editor
Zetterling, Carl-MikaelÖstling, Mikael
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Solid-State Electronics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf