Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Damage evolution and recovery in 4H and 6H silicon carbide irradiated with aluminum ions
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0002-8760-1137
2002 (English)In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 191, 514-518 p.Article in journal (Refereed) Published
Abstract [en]

Damage evolution and isochronal recovery have been studied in single crystal 4H and 6H silicon carbide (SiC) irradiated with 1.1 MeV Al-2(2+) molecular ions at 150 K to ion fluences ranging from 0.15 to 2.85 Al+/nm(2). The damage evolution and recovery on both the Si and C sublattices were determined using a 0.94 MeV deuterium beam in ion channeling geometry by simultaneously measuring the scattering/reaction yield from Rutherford backscattering spectrometry combined with C-12(d,p)C-13 nuclear reaction analysis. The rate of damage evolution at 150 K is higher for 4H-SiC than for 6H-SiC. At low doses, the rate of C disordering is higher than that for Si, which is consistent with the lower displacement energy for C. Both 4H and 614 SiC exhibit only minor damage recovery below 300 K. Above 300 K damage recovery on the Si and C sublattices is similar for both 4H and 6H SiC. Three distinct recovery stages are observed on each sublattice in 4H-SiC, and at high doses, where a buried amorphous layer is produced, an additional recovery stage is observed above 800 K.

Place, publisher, year, edition, pages
2002. Vol. 191, 514-518 p.
Keyword [en]
silicon carbide, defects, amorphization, thermal recovery, induced amorphization, accumulation, disorder, ceramics
Identifiers
URN: urn:nbn:se:kth:diva-21692ISI: 000176692300099OAI: oai:DiVA.org:kth-21692DiVA: diva2:340390
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Hallén, Anders.

Search in DiVA

By author/editor
Hallén, Anders.
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf