Change search
ReferencesLink to record
Permanent link

Direct link
Linear optimal control applied to instabilities in spatially developing boundary layers
KTH, Superseded Departments, Mechanics.ORCID iD: 0000-0001-7864-3071
2002 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 470, 151-179 p.Article in journal (Refereed) Published
Abstract [en]

The work presented extends previous research on linear controllers in temporal channel flow to spatially evolving boundary layer flow. The flows studied are those on an infinite swept wedge described by the Falkner-Skan-Cooke (FSC) velocity profiles, including the special case of the flow over a flat plate. These velocity profiles are used as the base flow in the Orr-Sommerfeld-Squire equations to compute the optimal feedback control through blowing and suction at the wall utilizing linear optimal control theory. The control is applied to a parallel FSC flow with unstable perturbations. Through an eigenvalue analysis and direct numerical simulations (DNS), it is shown that instabilities are stabilized by the controller in the parallel case. The localization of the convolution kernels for control is also shown for the FSC profiles. Assuming that non-parallel effects are small a technique is developed to apply the same controllers to a DNS of a spatially evolving flow. The performance of these controllers is tested in a Blasius flow with both a Tollmien-Schlichting (TS) wave and an optimal spatial transiently growing perturbation. It is demonstrated that TS waves are stabilized and that transient growth is lowered by the controller. Then the control is also applied to a spatial FSC flow with unstable perturbations leading to saturated cross-flow vortices in the uncontrolled case. It is demonstrated that the linear controller successfully inhibits the growth of the cross-flow vortices to a saturated level and thereby delays the possibility of transition through secondary instabilities. It is also demonstrated that the controller works for relatively high levels of nonlinearity, and for stationary as well as time-varying perturbations.

Place, publisher, year, edition, pages
2002. Vol. 470, 151-179 p.
Keyword [en]
active control, flow-control, shear flows, transition, disturbances, wall, vortices, suction, growth
URN: urn:nbn:se:kth:diva-22049DOI: 10.1017/s0022112002001702ISI: 000179255500008OAI: diva2:340747
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Henningson, Dan S.
By organisation
In the same journal
Journal of Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link