Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Failure mechanisms and modelling of impact damage in sandwich beams - A 2D approach: Part I - Experimental investigation
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.ORCID iD: 0000-0002-9207-3404
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.ORCID iD: 0000-0002-9744-4550
2003 (English)In: Journal of Sandwich Structures and Materials, ISSN 1099-6362, E-ISSN 1530-7972, Vol. 5, no 1, 7-31 p.Article in journal (Refereed) Published
Abstract [en]

This paper addresses the effect of low velocity impact damage on post-impact failure mechanisms and structural integrity of foam core sandwich beams subjected to edgewise compression, shear and bending load cases. The study deals with a 2D configuration, where a sandwich beam is impacted by a steel cylinder across the whole width of the specimen. The impact damage is characterised as indentation of the core with sub-interface damage seen as a cavity while the GFRP faces remain virtually unaffected by the impact. Digital speckle photography (DSP) analysis is employed for in situ monitoring of crushing behaviour in the foam core during static indentation of sandwich specimens. The static shear strength of impact-damaged sandwich beams is compared with specimens with fabricated sub-interface cracks of the same length. DSP analysis reveals that the face-core interface in the peripheral regions of 2D impact damage is not entirely separated. The crack analogy is thus not fully representable since the surfaces remain bridged resulting in higher strength, when compared with fabricated cracks. The post-impact resistance to compressive loads is lower than for the specimens with fabricated cracks due to the presence of the cavity and the crushed core with reduced foundation stiffness support. The properties of crushed foam core are experimentally determined as they appear to be important for accurate modelling and analysis of the residual strength of sandwich beams. Modelling and post-impact analysis of the specimens with impact damage is elaborated in detail in part 11 of this study.

Place, publisher, year, edition, pages
2003. Vol. 5, no 1, 7-31 p.
Keyword [en]
foam, composite, core, behavior
National Category
Composite Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-22245DOI: 10.1106/109963603024584ISI: 000180965500001OAI: oai:DiVA.org:kth-22245DiVA: diva2:340943
Note
QC 20100525 NR 20140804Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hallström, StefanZenkert, Dan

Search in DiVA

By author/editor
Hallström, StefanZenkert, Dan
By organisation
Lightweight Structures
In the same journal
Journal of Sandwich Structures and Materials
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf