Change search
ReferencesLink to record
Permanent link

Direct link
Mechanism of the reductive half-reaction in cellobiose dehydrogenase
KTH, Superseded Departments, Pulp and Paper Technology.
Show others and affiliations
2003 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 278, no 9, 7160-7166 p.Article in journal (Refereed) Published
Abstract [en]

The extracellular flavocytochrome cellobiose dehydrogenase (CDH; EC participates in lignocellulose degradation by white-rot fungi with a proposed role in the early events of wood degradation. The complete hemoflavoenzyme consists of a catalytically active dehydrogenase fragment (DHcdh) connected to a b-type cytochrome domain via a linker peptide. In the reductive half-reaction, DHcdh catalyzes the oxidation of cellobiose to yield cellobiono-1,5-lactone. The active site of DHcdh is structurally similar to that of glucose oxidase and cholesterol oxidase, with a conserved histidine residue positioned at the re face of the flavin ring close to the N5 atom. The mechanisms of oxidation in glucose oxidase and cholesterol oxidase are still poorly understood, partly because of lack of experimental structure data or difficulties in interpreting existing data for enzyme-ligand complexes. Here we report the crystal structure of the Phanerochaete chrysosporium DHcdh with a bound inhibitor, cellobiono-1,5-lactam, at 1.8-Angstrom resolution. The distance between the lactam C1 and the flavin N5 is only 2.9 Angstrom, implying that in an approximately planar transition state, the maximum distance for the axial 1-hydrogen to travel for covalent addition to N5 is 0.8-0.9 Angstrom. The lactam O1 interacts intimately with the side chains of His-689 and Asn-732. Our data lend substantial structural support to a reaction mechanism where His-689 acts as a general base by abstracting the O1 hydroxyl proton in concert with transfer of the C1 hydrogen as hydride to the re face of the flavin N5.

Place, publisher, year, edition, pages
2003. Vol. 278, no 9, 7160-7166 p.
Keyword [en]
amino-acid oxidase, phanerochaete-chrysosporium, crystal-structure, cholesterol oxidase, penicillium amagasakiense, angstrom resolution, glucose-oxidase, substrate, oxidation, wood
URN: urn:nbn:se:kth:diva-22277ISI: 000181195100069OAI: diva2:340975
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Henriksson, GunnarDivne, Christina
By organisation
Pulp and Paper TechnologyBiotechnology
In the same journal
Journal of Biological Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link