Change search
ReferencesLink to record
Permanent link

Direct link
Determination of the flow-wetted surface in fractured media
KTH, Superseded Departments, Chemical Engineering and Technology.ORCID iD: 0000-0001-8241-2225
KTH, Superseded Departments, Chemical Engineering and Technology.
2003 (English)In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009, Vol. 61, no 04-jan, 361-369 p.Article in journal (Refereed) Published
Abstract [en]

Diffusion and sorption in the rock matrix are important retardation mechanisms for radionuclide transport in fractured media. For the conditions existing in a deep repository in crystalline rock, interaction with the rock matrix is controlled by the water flowrate in the fractures and the surface area in contact with the flowing water (the so-called flow-wetted surface (FWS)). The flow-wetted surface may be determined from the frequency of open fractures intersecting a borehole. The choice of packer distance used in these hydraulic measurements is crucial, however, since several open fractures may be found in one packer interval. The use of a packer distance that is too large may result in a considerable underestimation of the flow-wetted surface. This is especially important in zones with a high frequency of open fractures (fracture zones) where a small packer distance is a fundamental requirement. A large volume of hydraulic data has been compiled in Sweden from measurements using quite small packer distances. Over the last decade, the most common packer distance used for the hydraulic tests has been 3 m, although some new measurements using a shorter packer distance have also been performed. In several cases, the resolution of these measurements has been less than 0.5 m. All these data have been analysed in detail. From these data, the flow-wetted surface has been calculated and compared with the flow-wetted surface estimated in earlier studies. The results show the importance of using a small packer distance for carrying out borehole transmissivity measurements.

Place, publisher, year, edition, pages
2003. Vol. 61, no 04-jan, 361-369 p.
Keyword [en]
matrix diffusion, flow-wetted surface
URN: urn:nbn:se:kth:diva-22315ISI: 000181510100029OAI: diva2:341013
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Moreno, LuisNeretnieks, Ivars
By organisation
Chemical Engineering and Technology
In the same journal
Journal of Contaminant Hydrology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link