Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temporal robustness of linear relationships between production and transpiration
KTH, Superseded Departments, Land and Water Resources Engineering.
2003 (English)In: Plant and Soil, ISSN 0032-079X, E-ISSN 1573-5036, Vol. 251, no 2, 211-218 p.Article in journal (Refereed) Published
Abstract [en]

Seasonal dependence of biomass production on transpiration has been previously reported for a number of crops under salinity and drought. Linear yield (Y) to transpiration ( T) relationships have been utilized in plant-growth and water-uptake models to estimate yield based on predicted transpiration values. The relationship is often employed for time steps that are very small compared with the whole season measurements, even though no empirical validation exists for such application. This work tests the hypothesis that linear Y-T relationships are valid throughout the life span of crops under varied natural conditions and levels of environmental stress. Effects of salinity and water supply on growth, water use and yields of tomatoes ( Lycopersicon esculentum Mill.) were studied for two distinct conditions of potential transpiration. Linear relationships between relative Y and relative ET were found to be consistent throughout the life span of the crops for both growing seasons. Water-use efficiency increased together with plant growth as a result of changes in the plant's surface area to volume ratio. This empirical validation of linear Y-T relationships for short time periods is beneficial in confirming their usefulness in growth and water uptake models.

Place, publisher, year, edition, pages
2003. Vol. 251, no 2, 211-218 p.
Keyword [en]
Lycopersicon esculentum, plant growth, transpiration, water uptake, yield, salt tolerance, water, model, salinity, field, boron, crops, plant, yield
Identifiers
URN: urn:nbn:se:kth:diva-22383ISI: 000182007100003OAI: oai:DiVA.org:kth-22383DiVA: diva2:341081
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Jansson, Per-Erik.
By organisation
Land and Water Resources Engineering
In the same journal
Plant and Soil

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf