Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combined methanol reforming for hydrogen generation over monolithic catalysts
KTH, Superseded Departments, Chemical Engineering and Technology.
2003 (English)In: Chemical Engineering Journal, ISSN 1385-8947, Vol. 93, no 1, 91-101 p.Article in journal (Refereed) Published
Abstract [en]

An experimental investigation on hydrogen generation from methanol using monolithic catalysts is presented in this paper. The activity and carbon dioxide selectivity for the reforming of methanol over various binary copper-based materials, Cu/Cr, Cu/Zn and Cu/Zr, have been evaluated. The methanol reforming was performed using steam reforming and combined reforming (CMR, a combination of steam reforming and partial oxidation). The CMR process was carried out at two modes of operation: near auto-thermal and at slightly exothermal conditions. The catalysts have been characterized using BET surface area measurement, X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscopy (SEM-EDS). The results show that the choice of catalytic material has a great influence on the methanol conversion and carbon dioxide selectivity of the reforming reaction. The zinc-containing catalyst showed the highest activity for the steam reforming process, whereas the copper/chromium catalyst had the highest activity for the CMR process. The copper/zirconium catalyst had the highest CO2 selectivity for all the investigated process alternatives.

Place, publisher, year, edition, pages
2003. Vol. 93, no 1, 91-101 p.
Keyword [en]
fuel cell vehicles, methanol reforming, hydrogen, monoliths, copper-based catalysts, fuel-cell applications, partial oxidation
Identifiers
URN: urn:nbn:se:kth:diva-22471ISI: 000182638500011OAI: oai:DiVA.org:kth-22471DiVA: diva2:341169
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Pettersson, Lars J.
By organisation
Chemical Engineering and Technology
In the same journal
Chemical Engineering Journal

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf