Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal diffusivity measurements of liquid silicate melts
KTH, Superseded Departments, Materials Science and Engineering.
2003 (English)In: International journal of thermophysics, ISSN 0195-928X, E-ISSN 1572-9567, Vol. 24, no 3, 785-797 p.Article in journal (Refereed) Published
Abstract [en]

The effect of structure on the thermal diffusivities/ conductivities for liquid silicates have been summarized based on recent experimental work carried out by the Royal Institute of Technology, Stockholm and the Tokyo Institute of Technology using the laser-flash and the hot-wire methods, respectively. In the former case, the effective thermal diffusivity was measured by a three-layer method. The relationship proposed by Mills that the thermal conductivity of silicates increases with a decrease in the ratio of NBO/T (number of non-bridging oxygens per tetrahedrally coordinated atom) has been well supported by the effective thermal diffusivity data for the liquid CaO-Al2O3-SiO2 slags. However, it has been shown that for the slags having a higher CaO/Al2O3 ratio, the effective thermal diffusivity is roughly constant independent of the ratios of NBO/T. It has been concluded that when the silicate network is largely broken down, the phonon mean free path is not affected by the structure. It has been found by the hot-wire method that the magnitudes of thermal resistivity are in the hierarchy Li2O-SiO2

Place, publisher, year, edition, pages
2003. Vol. 24, no 3, 785-797 p.
Keyword [en]
effective thermal diffusivity, hot-wire method, laser flash method, phonon conduction, radiation conduction, thermal conductivity, conductivity
Identifiers
URN: urn:nbn:se:kth:diva-22556ISI: 000183324100014OAI: oai:DiVA.org:kth-22556DiVA: diva2:341254
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Seetharaman, Seshadri
By organisation
Materials Science and Engineering
In the same journal
International journal of thermophysics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf