Change search
ReferencesLink to record
Permanent link

Direct link
Rational design of a lipase to accommodate catalysis of Baeyer-Villiger oxidation with hydrogen peroxide
KTH, Superseded Departments, Biochemistry and Biotechnology.
KTH, Superseded Departments, Chemistry.ORCID iD: 0000-0003-2673-075X
2003 (English)In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 9, no 3, 164-171 p.Article in journal (Refereed) Published
Abstract [en]

The mechanism and potential energy surface for the Baeyer-Villiger oxidation of acetone with hydrogen peroxide catalyzed by a Ser105-Ala mutant of Candida antarctica Lipase B has been determined using ab initio and density functional theories. Initial substrate binding has been studied using an automated docking procedure and molecular dynamics simulations. Substrates were found to bind to the active site of the mutant. The activation energy for the first step of the reaction, the nucleophilic attack of hydrogen peroxide on the carbonyl carbon of hydrogen peroxide, was calculated to be 4.4 kcal mol(-1) at the B3LYP/6-31+G* level. The second step, involving the migration of the alkyl group, was found to be the rate-determining step with a computed activation energy of 19.9 kcal mol(-1) relative the reactant complex. Both steps were found to be lowered considerably in the reaction catalyzed by the mutated lipase, compared to the uncatalyzed reaction. The first step was lowered by 36.0 kcal mol(-1) and the second step by 19.5 kcal mol(-1). The second step of the reaction, the rearrangement step, has a high barrier of 27.7 kcal mol(-1) relative to the Criegee intermediate. This could lead to an accumulation of the intermediate. It is not clear whether this result is an artifact of the computational procedure, or an indication that further mutations of the active site are required.

Place, publisher, year, edition, pages
2003. Vol. 9, no 3, 164-171 p.
Keyword [en]
density functional theory, Candida antarctica lipase B, rational design, density-functional theory, free-energy calculations, molecular-dynamics, exact exchange, ab-initio, basis-set, rearrangement, simulations, mechanism, protein
URN: urn:nbn:se:kth:diva-22660DOI: 10.1007/s00894-003-0128-yISI: 000184059700005OAI: diva2:341358
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hult, KarlBrinck, Tore
By organisation
Biochemistry and BiotechnologyChemistry
In the same journal
Journal of Molecular Modeling

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 42 hits
ReferencesLink to record
Permanent link

Direct link