Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
(-)-germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships
Show others and affiliations
2003 (English)In: Journal of Comparative Physiology A. Sensory, neural, and behavioral physiology, ISSN 0340-7594, E-ISSN 1432-1351, Vol. 189, no 7, 563-577 p.Article in journal (Refereed) Published
Abstract [en]

Specificity of olfactory receptor neurones plays an important role in food and host preferences of a species, and may have become conserved or changed in the evolution of polyphagy and oligophagy. We have identified a major type of plant odour receptor neurones responding to the sesquiterpene germacrene D in three species of heliothine moths, the polyphagous Heliothis virescens and Helicoverpa armigera and the oligophagous Helicoverpa assulta. The neurones respond with high sensitivity and selectivity to (-)-germacrene D, as demonstrated by screening via gas chromatography with numerous mixtures of plant volatiles. Germacrene D was present in both host and non-host plants, but only in half of the tested species. The specificity of the neurones was similar in the three species, as shown by the 'secondary' responses to a few other sesquiterpenes. The effect of (-)-germacrene D was about ten times stronger than that of the (+)-enantiomer, which again was about ten times stronger than that of (-)-alpha-ylangene. Weaker effects were obtained for (+)-beta-ylangene, (+)-alpha-copaene, beta-copaene and two unidentified sesquiterpenes. The structure-activity relationship shows that the important properties of (-)-germacrene D in activating the neurones are the ten-membered ring system and the three double bonds acting as electron-rich centres, in addition to the direction of the isopropyl-group responsible for the different effects of the germacrene D enantiomers.

Place, publisher, year, edition, pages
2003. Vol. 189, no 7, 563-577 p.
Keyword [en]
GC-SCR, germacrene D, heliothine moths, olfactory receptor neurones, sesquiterpenes, germacrene-d, gas-chromatography, solidago-canadensis, plant odors, virescens, sesquiterpenes, biosynthesis, electrophysiology, identification, enantiomers
Identifiers
URN: urn:nbn:se:kth:diva-22710DOI: 10.1007/s00359-003-0434-yISI: 000184504500007OAI: oai:DiVA.org:kth-22710DiVA: diva2:341408
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Borg-Karlson, Anna-Karin
By organisation
Chemistry
In the same journal
Journal of Comparative Physiology A. Sensory, neural, and behavioral physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf