Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electron donor-acceptor dyads and triads based on tris(bipyridine)ruthenium(II) and benzoquinone: Synthesis, characterization, and photoinduced electron transfer reactions
Show others and affiliations
2003 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 42, no 17, 5173-5184 p.Article in journal (Refereed) Published
Abstract [en]

Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru-II-BQ-Co-III), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru-II-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru-II-BQ (4) and PTZ-Ru-II (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(1) = 5 x 10(9) s(-1) (tau(1) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) similar to 4.5 x 10(8) s(-1) (tau(b) similar to 2.2 ns), for both Ru-II-BQ and Ru-II-BQ-Co-III with no indication of a charge shift to generate the reduced Coll moiety. In the PTZ-Ru-II-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(.+)-Ru-II-BQ(.-) state (tau = 80 ns) in unusually high yield for a [Ru(bPY)(3)](2+)- based triad (> 90%), that lies at DeltaGdegrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(.+) and the BQ(.-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru-II a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru-*(II) state and 18% in the PTZ(.+)Ru(II)(bpy(.-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(.+)-Ru-II(bpy(.-)) state was thus faster than what would have been inferred from the Ru-*(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru-II and PTZ-Ru-II-acceptor complexes in the literature might need to be reconsidered.

Place, publisher, year, edition, pages
2003. Vol. 42, no 17, 5173-5184 p.
Keyword [en]
mlct excited-states, charge separation, ruthenium(ii) complexes, artificial photosynthesis, photophysical properties, polypyridyl complexes, dinuclear complexes, metal-complex, ligand, reduction
Identifiers
URN: urn:nbn:se:kth:diva-22754ISI: 000184836200019OAI: oai:DiVA.org:kth-22754DiVA: diva2:341452
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

In the same journal
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf