Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing carriers in two-dimensional systems with high spatial resolution by scanning spreading resistance microscopy
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
2003 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 83, no 11, 2184-2186 p.Article in journal (Refereed) Published
Abstract [en]

In this work, cross-sectional scanning spreading resistance microscopy (SSRM) is used to profile carriers in quantum wells (QWs). The investigated structures consist of InGaAs wells of different widths sandwiched between Si-doped InP barriers. It is demonstrated that SSRM is indeed capable of detecting electrons in the quantum wells with high lateral resolution and that the SSRM signal shows a systematic trend for the different wells. Clear dips in the resistance signal are observed at the quantum wells and imply accumulated electron densities higher than in the surrounding barriers. Carrier density in the QW is found by using the calibration curve obtained from the resistance measurements on reference layers sample. It is also shown that only at certain appropriate tip-sample bias conditions the depletion regions in the barriers adjacent to the wells are resolved. Finally, we demonstrate that under very low forward biases the full width at half maximum of the observed resistance dips in SSRM data is nearly equal to the geometric QW widths.

Place, publisher, year, edition, pages
2003. Vol. 83, no 11, 2184-2186 p.
Identifiers
URN: urn:nbn:se:kth:diva-22800DOI: 10.1063/1.1611619ISI: 000185231000032OAI: oai:DiVA.org:kth-22800DiVA: diva2:341498
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Anand, Srinivasan
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Applied Physics Letters

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf