Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Remarks on a theorem by N. Yu. Antonov
KTH, Superseded Departments, Mathematics.
2003 (English)In: Studia Mathematica, ISSN 0039-3223, Vol. 158, no 1, 79-97 p.Article in journal (Refereed) Published
Abstract [en]

We extend some results of N. Yu. Antonov on convergence of Fourier series to more general settings. One special feature of our work is that we do not assume smoothness for the kernels in our hypotheses. This has interesting applications to convergence with respect to general orthonormal systems, like the Walsh-Fourier system, for which we prove a.e. convergence in the class L log L log log log L. Other applications are given in the theory of differentiation of integrals.

Place, publisher, year, edition, pages
2003. Vol. 158, no 1, 79-97 p.
Keyword [en]
fourier-series, convergence, integrals, ae
Identifiers
URN: urn:nbn:se:kth:diva-22944ISI: 000186451500007OAI: oai:DiVA.org:kth-22944DiVA: diva2:341642
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Sjölin, Per
By organisation
Mathematics
In the same journal
Studia Mathematica

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf