Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rf sputtered Na0.5K0.5NbO3 films on oxide substrates as optical waveguiding material
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0001-8774-9302
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
Institute of Thin Films and Interfaces, Section: Ion Technology, Forschungzentrum Jülich.
2003 (English)In: Integrated Ferroelectrics, ISSN 1058-4587, E-ISSN 1607-8489, Vol. 54, p. 631-640Article in journal (Refereed) Published
Abstract [en]

Highly crystalline Na0.5K0.5NbO3 (NKN) thin films of 1-2 mum thickness were deposited by rf-magnetron sputtering of a stoichiometric, ceramic target on single crystal LaAlO3 (001) and Al2O3 (01 (1) under bar2) substrates. X-ray diffraction measurements revealed epitaxial quality of NKN/LaAlO3 film structures, whereas NKN films on sapphire substrates were found to be preferentially c -axis oriented. A prism-coupling technique was used to characterize optical and waveguiding properties. A bright-line spectrum at lambda = 632.8 nm, revealed sharp peaks, corresponding to transverse magnetic (TM) and electric (TE) waveguide propagation modes in NKN/LaAlO3 and NKN/Al2O3 thin films. Using a least mean square fit the refractive index for the films and film thickness were calculated. The extraordinary and ordinary refractive indices were determined to n(e) = 2.207 +/- 0.002 and n(o) = 2.261 +/- 0.002, and n(e) = 2.216 +/- 0.002 and n(o) = 2.247 +/- 0.002 at lambda = 632.8 nm for 2.0 mum thick NKN films on LaAlO3 and Al2O3 , respectively. This corresponds to a birefringence Deltan = n(e) - n(o) = -0.054 +/- 0.003 and Deltan = -0.031 +/- 0.003 in the films, where the larger Deltan for the NKN/LaAlO3 structure can be explained by the superior crystalline quality compared to NKN/Al2O3 . Atomic force microscopy images of the film surfaces revealed rms roughnesses of 2.5 nm and 8.0 nm for 1.0-mum thick NKN/LaAlO3 and NKN/Al2O3 films, respectively. We believe surface scattering is one of the main sources of waveguide losses in the thin films.

Place, publisher, year, edition, pages
2003. Vol. 54, p. 631-640
Keywords [en]
Na0.5K0.5NbO3 films, rf-magnetron sputtering, prism coupling, waveguiding, refractive index, knbo3 thin-films, sapphire, light
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-23054DOI: 10.1080/10584580390259047ISI: 000187625200013OAI: oai:DiVA.org:kth-23054DiVA, id: diva2:341752
Note
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Electro-Optical Na0.5K0.5NbO3 Films
Open this publication in new window or tab >>Electro-Optical Na0.5K0.5NbO3 Films
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Ferroelectric oxides are a group of advanced electronic materials with a wide variety of properties useful in applications such as memory devices, resonators and filters, infrared sensors, microelectromechanical systems, and optical waveguides and modulators.

Among the oxide perovskite-structured ferroelectric thin film materials, sodium potassium niobate or Na0.5K0.5NbO3 (NKN) has recently emerged as one of the most promising materials in radio frequency (rf) and microwave applications due to high dielectric tenability and low dielectric loss.

This thesis presents results on growth and structural, optical, and electrical characterization of NKN thin films. The films were deposited by rf-magnetron sputtering of a stoichiometric, high density, ceramic Na0.5K0.5NbO3 target onto single crystal LaAlO3 (LAO), Al2O3 (sapphire), SrTiO3, and Nd:YAlO3, and polycrystalline Pt80Ir20 substrates. By x-ray diffractometry, NKN films on c-axis oriented LaAlO3, SrTiO3 and Nd:YAlO3 substrates were found to grow epitaxially, whereas films on r-cut sapphire and polycrystalline Pt80Ir20 substrates were found to be preferentially (00l) oriented. The surface morphology was explored using atomic force microscopy.

Optical and waveguiding properties of the Na0.5K0.5NbO3/substrate heterostructures were characterized using prism-coupling technique. Sharp and distinguishable transverse magnetic and electric propagation modes were observed for NKN thicknesses up to 2.0 μm. The extraordinary and ordinary refractive indices were calculated together with the birefringence of the NKN material. The electro-optic effect in transverse geometry was measured in transmission, where the effective linear electro-optic response was determined to reff = 28 pm/V for NKN/Al2O3 with an applied dc field up to 18 kV/cm.

The ferroelectric state in NKN films on Pt80Ir20 at room temperature was indicated by a polarization loop with saturated polarization as high as 33.4 μC/cm2 at 700 kV/cm, remnant polarization of 10 μC/cm2, and coercive field of 90 kV/cm. Current-voltage characteristics of vertical Au/NKN/PtIr capacitive cells and planar Au/NKN/LAO interdigital capacitors (IDCs) showed very good insulating properties, with the leakage current density for an NKN IDC on the order of 30 nA/cm2 at 400 kV/cm. Rf dielectric spectroscopy demonstrated low loss, low frequency dispersion, and high voltage tunability. At 1 MHz, NKN/LAO showed a dissipation factor tan δ = 0.010 and a tunability of 16.5 % at 200 kV/cm. For the same structure the frequency dispersion was Δεr = 8.5 % between 1 kHz and 1 MHz.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. p. xii, 91
Series
Trita-FYS, ISSN 0280-316X ; 5299
Keywords
Functional materials, ferroelectrics, sodium potassium niobates, thin films, rf-magnetron sputtering, waveguiding, refractive index, prism-coupling, electro-optic effects, dielectric tunability, Funktionella material
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-193 (URN)91-7178-007-6 (ISBN)
Public defence
2005-05-20, D1, KTH, Lindstedtsvägen 17, 2tr, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100928Available from: 2005-05-12 Created: 2005-05-12 Last updated: 2010-09-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Khartsev, Sergiy

Search in DiVA

By author/editor
Blomqvist, MatsKhartsev, SergiyGrishin, Alexander M.
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Integrated Ferroelectrics
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf