Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A nonlinear dynamic stiffness model of a vibration isolator at finite deformations
KTH, Superseded Departments, Vehicle Engineering.ORCID iD: 0000-0001-5760-3919
2003 (English)In: Modern Practice in Stress and Vibration Analysis, 2003, Vol. 440-4, 475-480 p.Conference paper, Published paper (Refereed)
Abstract [en]

A nonlinear dynamic model of a vibration isolator is presented where influences of precompression and dynamic amplitude are investigated within the frequency domain. It is found that the dynamic stiffness at the frequency of a harmonic displacement excitation is strongly dependent on those parameters. The problems of simultaneously modeling the elastic, viscous and friction forces are removed by additively splitting them, where the elastic force is modeled by a nonlinear, shape factor based approach, the viscous force by a fractional derivative model while the friction force is modeled by a generalized friction element. The dynamic stiffness magnitude is shown to increase with static precompression and frequency while decreasing with dynamic excitation amplitude, with its loss angle displaying a maximum at an intermediate amplitude. The dynamic stiffness at a static precompression, using a linearized elastic force response model, is shown to agree with the fully nonlinear model except at the highest dynamic amplitudes. The latter model is displaying an increased stiffness magnitude at the highest amplitudes due to nonlinear elastic effects. Furthermore, a harmonic displacement excitation is shown to result in a force response containing the excitation frequency and all higher-order harmonics, whereas every other higher-order harmonics vanish for the elastically linearized case.

Place, publisher, year, edition, pages
2003. Vol. 440-4, 475-480 p.
Keyword [en]
fractional derivative, friction, isolator, rubber, shape factor, performance, behavior, systems
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-23127ISI: 000188594100058OAI: oai:DiVA.org:kth-23127DiVA: diva2:341825
Conference
Modern Practice in Stress and Vibration Analysis
Note
QC 20100525 NR 20140804Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2012-02-11Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Kari, Leif

Search in DiVA

By author/editor
Kari, Leif
By organisation
Vehicle Engineering
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf