Change search
ReferencesLink to record
Permanent link

Direct link
Stochastic simulation of radionuclide migration in discretely fractured rock near the Aspo Hard Rock Laboratory
KTH, Superseded Departments, Land and Water Resources Engineering.
2004 (English)In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 40, no 2, W02404- p.Article in journal (Refereed) Published
Abstract [en]

We study the migration of sorbing tracers through crystalline rock by combining relatively simple transport measures with particle tracking in a discrete fracture network. The rock volume is on a 100 m scale and is a replica of a thoroughly characterized site at the Aspo Hard Rock Laboratory, Sweden. Flow is driven by generic boundary conditions consistent with the natural gradient in the region. The emphasis is on the global effect of fracture-to-fracture hydraulic variability where individual fractures are assumed to be of uniform aperture. The transport measures are conditioned on two random variables: the water residence time (tau) and a parameter which quantifies the hydrodynamic control of retention (beta). Results are illustrated for two radionuclides: technetium (strongly sorbing) and strontium (weakly sorbing). It is found that the assumption of streamline routing or full mixing at fracture intersections has comparatively little impact on transport. The choice of the cubic or quadratic hydraulic law (i.e., relation between transmissivity and aperture) strongly affects water residence times but has little impact on average transport since it does not affect the statistics of beta. If the statistics of beta are known, then the distribution of water residence time (tau) is of little importance for transport. We assess the applicability of a linearized model beta = tau/b(ret) using two different approaches to estimate the effective retention'' aperture 2b(ret): from transmissivity data and from fracture density and flow porosity data. Under some conditions, these conventional estimates may provide acceptable representation of transport. The results stress the need for further studies on upscaling of tau, beta distributions as well as on estimating effective parameters for hydraulic control of retention.

Place, publisher, year, edition, pages
2004. Vol. 40, no 2, W02404- p.
Keyword [en]
crystalline rock, discrete network, fractured rock, radionuclide migration, stochastic simulation, solute transport, tracer tests, contaminant transport, porous formations, matrix diffusion, crystalline rock, mass-transport, fluid-flow, networks, retention
National Category
Environmental Engineering
URN: urn:nbn:se:kth:diva-23185DOI: 10.1029/2003wr002655ISI: 000189055500002ScopusID: 2-s2.0-1642278003OAI: diva2:341883

QC 20100525 QC 20111031

Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2014-12-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cvetkovic, Vladimir
By organisation
Land and Water Resources Engineering
In the same journal
Water resources research
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 46 hits
ReferencesLink to record
Permanent link

Direct link