Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue
Show others and affiliations
2004 (English)In: Molecular Plant-Microbe Interactions, ISSN 0894-0282, E-ISSN 1943-7706, Vol. 17, no 2, 202-215 p.Article in journal (Refereed) Published
Abstract [en]

In order to obtain information on genes specifically expressed in the ectomycorrhizal symbiosis, 3,555 expressed sequence tags (ESTs) were analyzed from a cDNA library constructed from ectomycorrhiza formed between the basidiomycete Paxillus involutus and birch (Betula pendula). cDNA libraries from saprophytically growing fungus (3,964 ESTs) and from axenic plants (2,532 ESTs) were analyzed in parallel. By clustering all the EST obtained, a nonredundant set of 2,284 unique transcripts of either fungal or plant origin were identified. The expression pattern of these genes was analyzed using cDNA microarrays. The analyses showed that the plant and fungus responded to the symbiosis by altering the expression levels of a number of enzymes involved in carbon metabolism. Several plant transcripts with sequence similarities to genes encoding enzymes in the tricarboxylic cycle and electron transport chain were down regulated as compared with the levels in free-living roots. In the fungal partner, a number of genes encoding enzymes in the lipid and secondary metabolism were down regulated in mycorrhiza as compared with the saprophytically growing mycelium. A substantial number of the ESTs analyzed displayed significant sequence similarities to proteins involved in biotic stress responses, but only a few of them showed differential expression in the mycorrhizal tissue, including plant and fungal metallothioneins and a plant defensin homologue. Several of the genes that were differentially expressed in the mycorrhizal root tissue displayed sequence similarity to genes that are known to regulate growth and development of plant roots and fungal hyphae, including transcription factors and Rho-like GTPases.

Place, publisher, year, edition, pages
2004. Vol. 17, no 2, 202-215 p.
Keyword [en]
basidiomycete pisolithus-tinctorius, symbiosis-regulated gene, no apical meristem, saccharomyces-cerevisiae, mycorrhizal symbiosis, vesicular transport, actin cytoskeleton, laccaria-bicolor, fungus, expression
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-23269DOI: 10.1094/MPMI.2004.17.2.202ISI: 000220329400008Scopus ID: 2-s2.0-1642345273OAI: oai:DiVA.org:kth-23269DiVA: diva2:341967
Note
QC 20100525 QC 20111031Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Uhlén, Mathias

Search in DiVA

By author/editor
Erlandsson, RikardLundeberg, JoakimUhlén, Mathias
By organisation
Biotechnology
In the same journal
Molecular Plant-Microbe Interactions
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf