Change search
ReferencesLink to record
Permanent link

Direct link
Kinetics of HCI uptake on ice at 190 and 203 K: implications for the microphysics of the uptake process
KTH, Superseded Departments, Chemical Engineering and Technology. Max-Planck-Institut für Chemie, Germany.ORCID iD: 0000-0002-4530-3414
Show others and affiliations
2004 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 108, no 30, 6302-6318 p.Article, review/survey (Refereed) Published
Abstract [en]

The uptake of HCl on vapor-deposited ice is investigated for HCl partial pressure p from 2 x 10(-8) to 10(-5) Torr at temperatures of 190 and 203 K in an especially designed Knudsen cell experiment. Two kinetic regimes can be distinguished experimentally: a long-lasting tailing which accounts for the major amount of the overall uptake and follows diffusion-like kinetics, gamma(t) proportional to t(-1/2) (gamma, uptake coefficient; t, time), and an initial period, where the uptake is higher than predicted by diffusion-like kinetics. The uptake kinetics are analyzed using analytical equations and also by full numerical simulation of simultaneous adsorption onto the surface and diffusion into the bulk. We derive the quantity H-d*D-1/2 (H-d*, effective Henry's law constant, D diffusion constant) and find H-d*D-1/2 proportional to p(-1/2), which implies that HCl dissociates upon uptake. The results for both analysis methods closely coincide. We suggest the use of a semiempirical parametrization for the total HCl uptake (molecules per geometric surface area) on vapor-deposited ice films as time dependent function n(t, p) = n(resid)(P) + C(T)(tp)(1/2), where C(T) is a constant which depends on temperature only. The compatibility of the residual, nondiffusive uptake, n(resid), with various adsorption isotherms is discussed. The analysis suggests that the experimentally observed diffusion-like kinetics dominates the overall trace gas uptake after a brief initial period. The diffusion-like kinetics must be considered when analyzing uptake experiments and when making applications to natural ice.

Place, publisher, year, edition, pages
2004. Vol. 108, no 30, 6302-6318 p.
Keyword [en]
stratospheric cloud surfaces, nitric-acid trihydrate, water-vein system, x-ray-scattering, hydrogen-chloride, sulfuric-acid, physical adsorption, hydrochloric-acid, vapor-pressures, tropospheric temperatures
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-23602DOI: 10.1021/jp0309623ISI: 000222863900007ScopusID: 2-s2.0-4043178589OAI: diva2:342301

QC 20100525

Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2014-12-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Malmström, Maria E.
By organisation
Chemical Engineering and Technology
In the same journal
Journal of Physical Chemistry A
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 27 hits
ReferencesLink to record
Permanent link

Direct link