Change search
ReferencesLink to record
Permanent link

Direct link
Three-dimensional flow modelling and sediment transport in the River Klaralven
KTH, Superseded Departments, Land and Water Resources Engineering.
2004 (English)In: Earth Surface Processes and Landforms, ISSN 0197-9337, E-ISSN 1096-9837, Vol. 29, no 7, 821-852 p.Article in journal (Refereed) Published
Abstract [en]

A three-dimensional flow model that uses the RNG k-epsilon turbulence model and a non-equilibrium wall function was applied to the River Klaralven in the southwest part of Sweden. The objectives were to study the nature of the flow in the river bifurcation and to investigate the short-term sediment transport patterns in the river. The effectiveness of three-dimensional flow models depends upon: (1) how well the river geometry and it surface roughness are modelled; and (2) the choice of the closure model. Improvements were obtained by modelling the river in two parts: the entire river reach, and a selected part. Composite Manning coefficients were used to account for roughness properties. The method requires a calibration process that ensures the water surface profiles match the field data. The k-epsilon model under-predicted both the extent of flow separation zones and the number of secondary flow regions having a spiral motion, in comparison with the RNG k-epsilon model. The 3-D model could predict with good accuracy both the general and secondary flow fields in the river. The results agreed well with the 3-D velocity measurements using an acoustic Doppler current profiler. A conceptual model was developed that accounts for the development of secondary flows in a river bifurcation having two bends. The main flow feature in the river cross-sections was the existence of multiple counter-rotating spiral motions. The number of spiral motions increased as the river bends were approached. The river bends also caused vorticity intensification and increased the vertical velocities. The application of the 3-D flow model was extended by solving the sediment continuity equation. The sediment transport patterns were related to the secondary flow fields in the river. The sediment transport patterns at the river bifurcations are characterized by the growth of a sandbank.

Place, publisher, year, edition, pages
2004. Vol. 29, no 7, 821-852 p.
Keyword [en]
numerical modelling, 3-D models, CFD modelling, river flows, sediment transport, river bifurcation, Klaralven, flooding, computational fluid-dynamics, channel confluences, meander model, bed, simulation, roughness, bend
National Category
Civil Engineering
URN: urn:nbn:se:kth:diva-23608DOI: 10.1002/esp.1071ISI: 000222925800002ScopusID: 2-s2.0-3543043749OAI: diva2:342307
QC 20100525 QC 20111103Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2011-11-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dargahi, Bijan
By organisation
Land and Water Resources Engineering
In the same journal
Earth Surface Processes and Landforms
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 75 hits
ReferencesLink to record
Permanent link

Direct link